Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 435
Filter
1.
BMC Med Imaging ; 24(1): 134, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840054

ABSTRACT

OBJECTIVE: To develop a nomogram based on tumor and peritumoral edema (PE) radiomics features extracted from preoperative multiparameter MRI for predicting brain invasion (BI) in atypical meningioma (AM). METHODS: In this retrospective study, according to the 2021 WHO classification criteria, a total of 469 patients with pathologically confirmed AM from three medical centres were enrolled and divided into training (n = 273), internal validation (n = 117) and external validation (n = 79) cohorts. BI was diagnosed based on the histopathological examination. Preoperative contrast-enhanced T1-weighted MR images (T1C) and T2-weighted MR images (T2) for extracting meningioma features and T2-fluid attenuated inversion recovery (FLAIR) sequences for extracting meningioma and PE features were obtained. The multiple logistic regression was applied to develop separate multiparameter radiomics models for comparison. A nomogram was developed by combining radiomics features and clinical risk factors, and the clinical usefulness of the nomogram was verified using decision curve analysis. RESULTS: Among the clinical factors, PE volume and PE/tumor volume ratio are the risk of BI in AM. The combined nomogram based on multiparameter MRI radiomics features of meningioma and PE and clinical indicators achieved the best performance in predicting BI in AM, with area under the curve values of 0.862 (95% CI, 0.819-0.905) in the training cohort, 0.834 (95% CI, 0.780-0.908) in the internal validation cohort and 0.867 (95% CI, 0.785-0.950) in the external validation cohort, respectively. CONCLUSIONS: The nomogram based on tumor and PE radiomics features extracted from preoperative multiparameter MRI and clinical factors can predict the risk of BI in patients with AM.


Subject(s)
Meningeal Neoplasms , Meningioma , Nomograms , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/surgery , Female , Male , Middle Aged , Retrospective Studies , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Neoplasm Invasiveness , Adult , Aged , Multiparametric Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Magnetic Resonance Imaging/methods , Radiomics
2.
Small ; : e2401022, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809081

ABSTRACT

Renewable energy technologies, such as water splitting, heavily depend on the oxygen evolution reaction (OER). Nanolaminated ternary compounds, referred to as MAX phases, show great promise for creating efficient electrocatalysts for OER. However, their limited intrinsic oxidative resistance hinders the utilization of conductivity in Mn+1Xn layers, leading to reduced activity. In this study, a method is proposed to improve the poor inoxidizability of MAX phases by carefully adjusting the elemental composition between Mn+1Xn layers and single-atom-thick A layers. The resulting Ta2FeC catalyst demonstrates superior performance compared to conventional Fe/C-based catalysts with a remarkable record-low overpotential of 247 mV (@10 mA cm-2) and sustained activity for over 240 h. Notably, during OER processing, the single-atom-thick Fe layer undergoes self-reconstruction and enrichment from the interior of the Ta2FeC MAX phase toward its surface, forming a Ta2FeC@Ta2C@FeOOH heterostructure. Through density functional theory (DFT) calculations, this study has found that the incorporation of Ta2FeC@Ta2C not only enhances the conductivity of FeOOH but also reduces the covalency of Fe─O bonds, thus alleviating the oxidation of Fe3+ and O2-. This implies that the Ta2FeC@Ta2C@FeOOH heterostructure experiences less lattice oxygen loss during the OER process compared to pure FeOOH, leading to significantly improved stability. These results highlight promising avenues for further exploration of MAX phases by strategically engineering M- and A-site engineering through multi-metal substitution, to develop M2AX@M2X@AOOH-based catalysts for oxygen evolution.

3.
Mol Ecol ; : e17386, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751195

ABSTRACT

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.

4.
Mol Med ; 30(1): 60, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750415

ABSTRACT

Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.


Subject(s)
Interleukin-22 , Interleukins , Pancreatitis , Humans , Interleukins/metabolism , Pancreatitis/metabolism , Pancreatitis/immunology , Animals , Acute Disease
5.
Biol Direct ; 19(1): 40, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807240

ABSTRACT

Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.


Subject(s)
Hydroxybenzoates , Plant Growth Regulators , Rhododendron , Ultraviolet Rays , Hydroxybenzoates/metabolism , Plant Growth Regulators/metabolism , Rhododendron/metabolism , Stress, Physiological , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/drug effects , Proteomics , Signal Transduction/radiation effects , Metabolomics/methods , Phosphorylation
6.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701189

ABSTRACT

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Subject(s)
B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Multiple Sclerosis , Oxidative Phosphorylation , Animals , Multiple Sclerosis/immunology , Humans , Cytokines/immunology , Cytokines/metabolism , Mice , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Female , Male , Mice, Inbred C57BL , Adult , Adenosine Triphosphate/metabolism , Middle Aged
7.
Res Sq ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766009

ABSTRACT

In multiple myeloma (MM), increased osteoclast differentiation leads to the formation of osteolytic lesions in most MM patients. Bisphosphonates, such as zoledronic acid (ZA), are used to ameliorate bone resorption, but due to risk of serious side effects as well as the lack of repair of existing lesions, novel anti-bone resorption agents are required. Previously, the absence of osteolytic lesions in MM was strongly associated with elevated levels of cystatin M/E (CST6), a cysteine protease inhibitor, secreted by MM cells. In this study, both MM- and ovariectomy (OVX)-induced osteoporotic mouse models were used to compare the effects of recombinant mouse CST6 (rmCst6) and ZA on preventing bone loss. µCT showed that rmCst6 and ZA had similar effects on improving percent bone volume, and inhibited differentiation of non-adherent bone marrow cells into mature osteoclasts. Single-cell RNA sequencing showed that rmCst6 and not ZA treatment reduced bone marrow macrophage percentage in the MM mouse model compared to controls. Protein and mRNA arrays showed that both rmCst6 and ZA significantly inhibit OVX-induced expression of inflammatory cytokines. For OVX mice, ERα protein expression in bone was brought to sham surgery level by only rmCst6 treatments. rmCst6 significantly increased mRNA and protein levels of ERα and significantly increased total intracellular estrogen concentrations for ex vivo osteoclast precursor cell cultures. Based on these results, we conclude that CST6 improves MM or OVX bone loss models by increasing the expression of estrogen receptors as well as the intracellular estrogen concentration in osteoclast precursors, inhibiting their maturation.

8.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791294

ABSTRACT

With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.


Subject(s)
Abscisic Acid , Flavonoids , Gene Expression Regulation, Plant , Rhododendron , Ultraviolet Rays , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Flavonoids/metabolism , Rhododendron/metabolism , Rhododendron/genetics , Gene Expression Regulation, Plant/drug effects , Chlorophyll/metabolism
9.
Hereditas ; 161(1): 15, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702800

ABSTRACT

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Subject(s)
Plant Proteins , Proteomics , Rhododendron , Ultraviolet Rays , Acetylation , Plant Proteins/metabolism , Plant Proteins/genetics , Rhododendron/genetics , Rhododendron/metabolism , Rhododendron/physiology , Stress, Physiological , Metabolomics , Protein Processing, Post-Translational , Gene Expression Regulation, Plant , Starch/metabolism , Photosynthesis
10.
Biology (Basel) ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785830

ABSTRACT

Potassium deficiency is one of the important factors restricting cucumber growth and development. This experiment mainly explored the effect of Bacillus subtilis (B. subtilis) on cucumber seedling growth and the photosynthetic system under different potassium levels, and the rhizosphere bacteria (PGPR) that promote plant growth were used to solubilize potassium in soil, providing theoretical support for a further investigation of the effect of biological bacteria fertilizer on cucumber growth and potassium absorption. "Xinjin No. 4" was used as the test material for the pot experiment, and a two-factor experiment was designed. The first factor was potassium application treatment, and the second factor was bacterial application treatment. The effects of different treatments on cucumber seedling growth, photosynthetic characteristics, root morphology, and chlorophyll fluorescence parameters were studied. The results showed that potassium and B. subtilis had obvious promotion effects on the cucumber seedling growth and the photosynthesis of leaves. Compared with the blank control, the B. subtilis treatment had obvious effects on the cucumber seedling height, stem diameter, leaf area, total root length, total root surface area, total root volume, branch number, crossing number, gs, WUE, Ci, and A; the dry weight of the shoot and root increased significantly (p ≤ 0.05). Potassium application could significantly promote cucumber growth, and the effect of B. subtilis and potassium application was greater than that of potassium application alone, and the best effect was when 0.2 g/pot and B. subtilis were applied. In conclusion, potassium combined with B. subtilis could enhance the photosynthesis of cucumber leaves and promote the growth of cucumber.

11.
Front Plant Sci ; 15: 1393574, 2024.
Article in English | MEDLINE | ID: mdl-38590739

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2023.1221288.].

12.
Radiat Res ; 201(4): 294-303, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38588381

ABSTRACT

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.


Subject(s)
Connexin 43 , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Calcium/metabolism , Connexins/metabolism , Connexins/pharmacology , Signal Transduction , Gap Junctions , Cell Communication
13.
Med Clin (Barc) ; 2024 Apr 18.
Article in English, Spanish | MEDLINE | ID: mdl-38641508

ABSTRACT

BACKGROUND: Recent clinical studies have yielded controversial results regarding the effect of probiotics on cognitive function in Alzheimer's disease (AD) or mild cognitive impairment (MCI) subjects. To clarify the efficacy of probiotics on cognition, we conducted a meta-analysis of randomized controlled trials (RCTs). METHODS: Instructions of the PRISMA 2020 statement were followed. Literature from the PubMed, Embase and Cochrane databases were systematically searched and manually screened for relevant published RCTs. We performed statistical analysis using RevMan, and assessed the risk of bias using the R software. RESULTS: A total of 12 studies comprising 852 patients with MCI or AD were identified. The results of meta-analysis showed that probiotics improved global cognitive function (SMD=0.67; 95% CI, 0.32, 1.02), recall/delayed memory (SMD=0.67; 95% CI: 0.32, 1.02), attention (SMD=0.31; 95% CI: 0.04, 0.58) and visuospatial/constructional (SMD=0.24; 95% CI: 0.06, 0.42) cognitive domain. CONCLUSION: This meta-analysis found that probiotic supplementation is associated with an improvement in cognitive performance among patients with AD and MCI. However, current evidence is limited, and more reliable large-scale RCTs with higher methodological quality are needed.

14.
Medicine (Baltimore) ; 103(16): e37798, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640295

ABSTRACT

Although several studies have reported a link between chronic atrophic gastritis (CAG) and atherosclerosis, the underlying mechanisms have not been elucidated. The present study aimed to investigate the molecular mechanisms common to both diseases from a bioinformatics perspective. Gene expression profiles were obtained from the Gene Expression Omnibus database. Data on atherosclerosis and CAG were downloaded from the GSE28829 and GSE60662 datasets, respectively. We identified the differentially expressed genes co-expressed in CAG and atherosclerosis before subsequent analyses. We constructed and identified the hub genes and performed functional annotation. Finally, the transcription factor (TF)-target genes regulatory network was constructed. In addition, we validated core genes and certain TFs. We identified 116 common differentially expressed genes after analyzing the 2 datasets (GSE60662 and GSE28829). Functional analysis highlighted the significant contribution of immune responses and the positive regulation of tumor necrosis factor production and T cells. In addition, phagosomes, leukocyte transendothelial migration, and cell adhesion molecules strongly correlated with both diseases. Furthermore, 16 essential hub genes were selected with cytoHubba, including PTPRC, TYROBP, ITGB2, LCP2, ITGAM, FCGR3A, CSF1R, IRF8, C1QB, TLR2, IL10RA, ITGAX, CYBB, LAPTM5, CD53, CCL4, and LY86. Finally, we searched for key gene-related TFs, especially SPI1. Our findings reveal a shared pathogenesis between CAG and atherosclerosis. Such joint pathways and hub genes provide new insights for further studies.


Subject(s)
Atherosclerosis , Gastritis, Atrophic , Humans , Gastritis, Atrophic/genetics , Atherosclerosis/genetics , Cell Movement , Computational Biology , Data Analysis , Gene Expression Profiling
15.
Scand J Immunol ; : e13371, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671579

ABSTRACT

Isoliquiritigenin (ISL) is a chalcone-type flavonoid derived from the root of licorice with antioxidant, anti-inflammatory, anti-tumour and neuroprotective properties. ISL has been proven to downregulate the productions of IL-1ß, TNF-α and IL-6 by macrophages. However, detailed molecular mechanisms of this modulation remain elusive. Here, ISL suppressed Syk phosphorylation and CD80, CD86, IL-1ß, TNF-α and IL-6 expressions in lipopolysaccharide-stimulated macrophages ex vivo. ApoC3-transgenic (ApoC3TG) mice had more activated macrophages. ISL was also able to downregulate the inflammatory activities of macrophages from ApoC3TG mice. Administration of ISL inhibited Syk activation and inflammatory activities of macrophages in ApoC3TG mice in vivo. The treatment of ISL further alleviated MCD-induced non-alcoholic fatty liver disease (NAFLD) in wild-type and ApoC3TG mice, accompanied by less recruitment and activation of liver macrophages. Due to the inhibition of Syk phosphorylation, ISL-treated macrophages displayed less production of cytoplasmic ROS, NLRP3, cleaved-GSDMD and cleaved-IL-1ß, suggesting less inflammasome activation. Finally, the molecular docking study demonstrated that ISL bound to Syk directly with the Kd of 1.273 × 10-8 M. When the Syk expression was knocked down by its shRNA, the inhibitory effects of ISL on activated macrophages disappeared, indicating that Syk was at least one of key docking-molecules of ISL. Collectively, ISL could alleviate MCD-induced NAFLD in mice involved with the inhibition of macrophage inflammatory activity by the blockade of Syk-induced inflammasome activation.

16.
Biology (Basel) ; 13(4)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38666823

ABSTRACT

Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.

17.
Food Chem ; 449: 139262, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608613

ABSTRACT

Despite its nutritional components and potential health benefits, the bitterness of quinoa seed limits its utilization in the food industry. Saponins are believed to be the main cause of the bitterness, but it is still uncertain which specific compound is responsible. This study aimed to isolate the main components contributing to the bitterness in quinoa seed by solvent extraction and various column chromatography techniques guided by sensory evaluation. Five compounds were identified by mass spectrometry and nuclear magnetic resonance analyses, with the dose-over-threshold factors from 29.03 to 198.89. The results confirmed that triterpenoids are responsible for the bitter taste in quinoa seed, with phytolaccagenic acid derivatives being the primary contributor. Additionally, kaempferol 3-O-(2″, 6″-di-O-α-rhamnopyranosyl)-ß-galactopyranoside (namely mauritianin), was demonstrated for the first time to be associated with the bitterness of quinoa. This study could provide new insight into the bitter compound identification in quinoa.


Subject(s)
Chenopodium quinoa , Phytochemicals , Seeds , Taste , Chenopodium quinoa/chemistry , Humans , Seeds/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Molecular Structure
18.
Plants (Basel) ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674471

ABSTRACT

Rhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. The carotenoid and abscisic acid (ABA) concentrations of the R. chrysanthum were ascertained in this investigation. Following UV-B stress, the level of carotenoids was markedly increased, and there was a strong correlation between carotenoids and ABA. The modifications of R. chrysanthum's OJIP transient curves were examined in order to verify the regulatory effect of ABA on carotenoid accumulation. It was discovered that external application of ABA lessened the degree of damage on the donor side and lessened the damage caused by UV-B stress on R. chrysanthum. Additionally, integrated metabolomics and transcriptomics were used to examine the changes in differentially expressed genes (DEGs) and differential metabolites (DMs) in R. chrysanthum in order to have a better understanding of the role that ABA plays in carotenoid accumulation. The findings indicated that the majority of DEGs were connected to carotenoid accumulation and ABA signaling sensing. To sum up, we proposed a method for R. chrysanthum carotenoid accumulation. UV-B stress activates ABA production, which then interacts with transcription factors to limit photosynthesis and accumulate carotenoids, such as MYB-enhanced carotenoid biosynthesis. This study showed that R. chrysanthum's damage from UV-B exposure was lessened by carotenoid accumulation, and it also offered helpful suggestions for raising the carotenoid content of plants.

19.
Am J Trop Med Hyg ; 110(6): 1263-1269, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688272

ABSTRACT

South Asian children are among the most severely malnourished worldwide. One prominent hypothesis is that open defecation in the local area exposes children to human fecal pathogens that can cause diarrhea and malnutrition. Much of the existing research uses district-level measures of open defecation, which could mask important local-area variation. A second hypothesis is that animal fecal matter is a major source of exposure. This analysis tested these dual hypotheses using census data collected from 949 villages in Tamil Nadu, India, and a survey conducted in a random sample of 5,000 households in the same area. The final analytic sample consisted of 2,561 children aged 0-10 years. We estimated the association between the measures of village- and household-level open defecation, household livestock ownership, and child height-for-age Z-scores in a regression framework, controlling for potential confounders. Results revealed that village- and household-level open defecations are negatively associated with child height. There was an estimated difference of approximately 0.5 height-for-age Z-score between children living in villages with no open defecation and children in villages where all households practiced open defecation (P = 0.001) and a 0.2 Z-score difference between children living in households that practiced open defecation and those living in households that did not (P = 0.001). Livestock ownership was not associated with child height. Overall, the findings provide evidence on the centrality of open defecation in explaining persistent child malnutrition in India and the higher risk of exposure to human fecal pathogens compared with animal feces in the south Indian context.


Subject(s)
Defecation , Livestock , Nutritional Status , Humans , India/epidemiology , Animals , Child, Preschool , Infant , Male , Female , Child , Ownership/statistics & numerical data , Feces , Infant, Newborn , Family Characteristics , Diarrhea/epidemiology , Body Height
20.
Am J Gastroenterol ; 119(6): 1158-1166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587286

ABSTRACT

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.


Subject(s)
Pancreatic Diseases , Humans , Female , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Aged , Pancreatic Diseases/epidemiology , Pancreatic Diseases/metabolism , Pancreatic Diseases/diagnostic imaging , Adult , Magnetic Resonance Imaging , Pancreatitis/epidemiology , Risk Factors , Biological Specimen Banks , Incidence , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/pathology , Intra-Abdominal Fat/diagnostic imaging , Prevalence , Diabetes Mellitus/epidemiology , Pancreas, Exocrine/metabolism , Proportional Hazards Models , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas/metabolism , UK Biobank
SELECTION OF CITATIONS
SEARCH DETAIL
...