Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 432: 113987, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35780959

ABSTRACT

NLRP3 inflammasome pathway-mediated inflammatory response is closely associated with depression. Increasing attention has been recently paid to the links between autophagy and depression, however, the relationship between autophagy and NLRP3 inflammasome in depressive behavior remain poorly understood. In the present study, the potential roles of autophagy-lysosome pathway in NLRP3 inflammasome regulation were investigated both in vivo (chronic unpredictable mild stress (CUMS)-induced depressive mouse model) and in vitro (LPS-induced cellular model) model. It demonstrated that CUMS induces depressive-like behaviors in mice, accompanied by increased expression of NLRP3 inflammasome and inflammatory responses. Meanwhile, it promoted the autophagosome marker LC3 and autophagic adapter protein p62 accumulation, accompanied by the decrease of lysosomal cathepsins B and D expression in the prefrontal cortex of mice. Notably, a significant colocalization of NLRP3 and LC3 in CUMS mice by immunofluorescence co-staining were observed. For the in vitro study, disrupting the lysosomal function with Baf A1 significantly increased the LPS-induced NLRP3 inflammasome accumulation and pro-inflammatory factors (IL-1ß and IL-18) production in BV2 cells. Collectively, our results suggested that the autophagic process is related to NLRP3 inflammasome activation, and dysfunctional lysosome in autophagy-lysosomal pathway may retard NLRP3 inflammasome degradation, facilitating the production of pro-inflammatory factors, thereby contributing to depressive behavior in CUMS mice.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Autophagy , Inflammasomes/metabolism , Lipopolysaccharides/metabolism , Lysosomes , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prefrontal Cortex/metabolism
2.
Inflammation ; 44(6): 2448-2462, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34657991

ABSTRACT

Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.


Subject(s)
Bacteria/metabolism , Behavior, Animal , Biogenic Monoamines/metabolism , Brain-Gut Axis , Brain/metabolism , Depression/microbiology , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Stress, Psychological/microbiology , Animals , Bacteria/genetics , Depression/immunology , Depression/metabolism , Depression/psychology , Disease Models, Animal , Dysbiosis , Feces/microbiology , Food Preferences , Locomotion , Male , Maze Learning , Metabolomics , Mice, Inbred C57BL , Restraint, Physical , Ribotyping , Stress, Psychological/immunology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Swimming
3.
Biochem Biophys Res Commun ; 511(2): 274-279, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30770101

ABSTRACT

Panic disorder (PD) is a multifactorial neuropsychiatric disorder. Our previous study has demonstrated that the nitric oxide (NO) pathway and the acid-sensing ion channel 1a (ASIC1a) level in the dorsal midbrain periaqueductal gray (dPAG) are involved in the modulation of panic-like responses. In addition, the prefrontal cortex (PFC) and the hippocampus also play a role in panic-like responses. However, no studies have investigated the protein level of ASIC1a in the PFC and hippocampus in a mouse model of panic-like disorders after alteration of the NO pathway in the dPAG. We investigated the production of a panic attack with intra-dPAG injections of SNAP, an NO donor, and 7-NI, an nNOS inhibitor. Moreover, we measured ASIC1a protein levels in the PFC and hippocampus. The rat exposure test (RET) is frequently used as an animal model of panic. In our study, C57BL/6 mice received an intra-dPAG injection of SNAP or 7-NI before RET; neurobehavioral tests were then conducted, followed by mechanistic evaluation through western blot analysis in the PFC and hippocampus. An intra-dPAG infusion of SNAP significantly increased the panic-like effect, whereas treatment with 7-NI decreased fear behavior. Mice treated with SNAP/7-NI showed significantly increased/decreased ASIC1a expression in the PFC, and a decreasing/increasing trend in the hippocampus. The present study suggests that the NO pathway in the dPAG plays a key role in panic-like responses in mice confronted by a rat, further, NO intra-dPAG injection also modulates the ASIC1a expression levels in the PFC and hippocampus.


Subject(s)
Acid Sensing Ion Channels/metabolism , Nitric Oxide/metabolism , Panic/drug effects , Prefrontal Cortex/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , Acid Sensing Ion Channels/analysis , Animals , Hippocampus/drug effects , Hippocampus/physiology , Male , Mice, Inbred C57BL , Periaqueductal Gray/drug effects , Periaqueductal Gray/physiology , Prefrontal Cortex/physiology , Rats, Sprague-Dawley
4.
Behav Brain Res ; 353: 32-39, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29953907

ABSTRACT

Predators induce defensive responses and fear behaviours in prey. The rat exposure test (RET) is frequently used as an animal model of panic. Nitric oxide (NO) which has been reported to be activated by the NMDA receptor, in turn mediates calcium/calmodulin-dependent protein kinase II (CaMKII) signalling pathways in defensive responses. ACCN2, the orthologous human gene of acid-sensing ion channel 1a (ASIC1a), is also associated with panic disorder; however, few studies have focused on the role of ASIC1a in the modulation of panic and calcium/CaMKII signalling by NO. In the present study, NG-nitro-L-arginine-methyl-ester (L-NAME; non-selective NOS inhibitor), S-nitroso-N-acetyl-D,L-penicillamine (SNAP; NO donor), and psalmotoxin (PcTx-1; selective ASIC1a blocker) were administered to the dorsal periaqueductal grey (dPAG) before the predator stimulus, and the roles of NO in the expression of ASIC1a, phosphorylation of CaMKIIα (p-CaMKIIα) and expression of calmodulin (CaM) were investigated. The effects of ASIC1a, p-CaMKIIα and CaM regulation were also examined. Our results showed that intra-dPAG infusion of L-NAME weakened panic-like behaviour and decreased ASIC1a, p-CaMKIIα and CaM expression levels, whereas intra-dPAG infusion of SNAP enhanced panic-like behaviour and increased ASIC1a, p-CaMKIIα and CaM levels. Intra-dPAG infusion of PcTx-1 also weakened panic-like behaviour and decreased p-CaMKIIα expression level. Taken together, these results indicate that NO and ASIC1a are involved in the modulation of RET-induced panic-like behaviour in the dPAG. NO regulates the calcium/CaMKII signalling pathways, and ASIC1a participates in this regulation.


Subject(s)
Acid Sensing Ion Channels/metabolism , Nitric Oxide/metabolism , Panic/physiology , Periaqueductal Gray/metabolism , Animals , Behavior, Animal/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/metabolism , Central Nervous System Agents/pharmacology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Periaqueductal Gray/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...