Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Food Sci ; 89(7): 4493-4504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804852

ABSTRACT

Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.


Subject(s)
Crataegus , Curcuma , Diet, High-Fat , Hypolipidemic Agents , Mice, Inbred C57BL , Obesity , Plant Extracts , Triglycerides , Animals , Curcuma/chemistry , Mice , Crataegus/chemistry , Obesity/metabolism , Obesity/drug therapy , Male , Hypolipidemic Agents/pharmacology , Plant Extracts/pharmacology , Triglycerides/blood , Mice, Obese , Liver/metabolism , Liver/drug effects , Cholesterol/blood , Alanine Transaminase/blood , PPAR gamma/metabolism , PPAR gamma/genetics , Lipid Metabolism/drug effects , Cholesterol, LDL/blood , Disease Models, Animal
2.
Food Chem ; 447: 138975, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489882

ABSTRACT

Here, the influence and potential mechanism by which cellulose nanocrystals (CNC) collaborated with Ca2+ enhancing the heat-induced gelation of pea protein isolate (PPI) were investigated. It was found that the combination of 0.45% CNC and 15 mM Ca2+ synergistically increased the gel strength (from 14.18 to 65.42 g) and viscoelasticity of PPI while decreased the water holding capacity. The improved particle size, turbidity, and thermostability as well as the reduced solubility, crystallinity, and gel porosity were observed in CNC/CaCl2 composite system. CNC fragments bind to specific amino acids in 11S legumin and 7S vicilin mainly through hydrogen bonding and van der Waals forces. Moreover, changes in the protein secondary structure and enhancement of the molecular interaction induced by CNC and Ca2+ could favor the robust gel network. The results will provide a new perspective on the functional regulation of pea protein and the creation of pea protein gel-based food.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Gels/chemistry , Water/chemistry , Nanoparticles/chemistry
3.
RSC Adv ; 14(11): 7551-7556, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38440270

ABSTRACT

A mild and environmentally electrochemical method for the synthesis of quinazolines and quinazolinones has been developed through anodic oxidation decarboxylative of α-oxocarboxylic acids. The present reaction was efficiently conducted by using simple and cheap NH4I as the N-source and electrolyte in an undivided cell. The desired products, quinazolines and quinazolinones, were isolated in high yield under chemical oxidant free conditions.

4.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302031

ABSTRACT

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Subject(s)
Glutamates , Resistant Starch , Zea mays , Zea mays/chemistry , Resistant Starch/metabolism , Ultrasonics , Starch/chemistry , Amylose/chemistry , Digestion
5.
Org Lett ; 26(1): 236-240, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38149800

ABSTRACT

Herein, a three-component 1,2-thiosulfonylation of alkenes with thiophenols and sulfonyl chlorides via synergistic photoredox and iron catalysis is described. Compared with previous studies, this protocol avoids tedious pre-synthesis of thiosulfonates and employs more readily accessible sulfonyl chlorides as a sulfonation reagent. Moreover, the reaction exhibits high compatibility with styrenes and unactivated alkenes as well as diverse sulfonyl chlorides, especially sulfamoyl chlorides. Preliminary mechanism investigations reveal that a radical pathway is involved in the catalytic cycle.

6.
J Org Chem ; 88(24): 17284-17296, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38054778

ABSTRACT

The selective functionalization of trifluoromethyl groups through C-F cleavage poses a significant challenge due to the high bond energy of the C(sp3)-F bonds. Herein, we present dihydroacridine derivatives as photocatalysts that can functionalize the C-F bond of trifluoromethyl groups with various alkenes under mild conditions. Mechanistic studies and DFT calculations revealed that upon irradiation, the dihydroacridine derivatives exhibit high reducibility and function as photocatalysts for reductive defluorination. This process involves a sequential single-electron transfer mechanism. This research provides valuable insights into the properties of dihydroacridine derivatives as photocatalysts, highlighting the importance of maintaining a planar conformation and a large conjugated system for optimal catalytic activity. These findings facilitate the efficient catalytic reduction of inert chemical bonds.

7.
Mikrochim Acta ; 190(11): 448, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872299

ABSTRACT

Photodynamic therapy is known for its non-invasiveness to significantly reduce undesired side effects on patients. However, the infiltration and invasiveness of tumor growth are still beyond the specificity of traditional light-controlled photodynamic therapy (PDT), which lacks cellular-level accuracy to tumor cells, possibly leading to "off-target" damage to healthy tissues such as the skin or immune cells infiltrated. Here, upconversion nanoparticles (UCNPs) were co-encapsulated with manganese dioxide (MnO2) by amphiphilic polymers poly(styrene-co-methyl acrylate) (PSMA) and further coated with photosensitizer (riboflavin)-loaded mesoporous silica (C@S/V). The C@S/V nanoprobes exhibited shielded upconversion luminescence in normal conditions (pH 7.4, no hydroperoxide (H2O2)) under 980-nm irradiation and thus minimal reactive oxygen production from riboflavin. However, the excess H2O2 (1 mM) and acidic environment (pH 5.5) could decompose the MnO2 within the C@S/V, resulting in remarkable enhancement of upconversion luminescence and a favorable hypoxia-relieving condition for PDT, providing a spatiotemporal signal for therapy initiation. The C@S/V nanoprobes were applied to the co-culture of normal cells (HEK293) and pancreatic cancer cells (Panc02) and performed a selective killing on Panc02 under the 980-nm irradiation. By using the "double-safety" strategy, a responsive C@S/V nanoprobe was designed by the selective activation of acidic and H2O2-rich conditions and 980-nm irradiation for spatiotemporally selective photodynamic therapy with cellular-level accuracy.


Subject(s)
Photochemotherapy , Humans , Photochemotherapy/methods , Oxides , Manganese Compounds , Hydrogen Peroxide , HEK293 Cells , Riboflavin
8.
J Org Chem ; 88(19): 13590-13597, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37690058

ABSTRACT

A novel method for the synthesis of formamides through the decarboxylative N-formylation of amines with glyoxylic acid has been developed. This transformation provides an efficient protocol for the synthesis of various formamides with moderate to excellent yields, and it can accommodate a wide range of functional groups under metal free and base free conditions. In addition, the large-scale experiments and high chemoselectivity have shown great potential application of this strategy.

9.
Carbohydr Polym ; 319: 121181, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567717

ABSTRACT

The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Calcium Chloride , Water/chemistry , Nanoparticles/chemistry
10.
Chemistry ; 29(57): e202302041, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37507840

ABSTRACT

A novel visible-light photoredox strategy is reported for the efficient dehydroxylative alkylation of a wide array of α-hydroxy carboxylic acid derivatives using diaryl boron radical. The reaction features readily accessible starting materials, broad substrate scope with excellent functionality tolerance. Preliminary mechanistic studies reveal that the spin-center shift process is responsible for the C-O bond activation, which is promoted by the diaryl boron radical generated from bench-stable and commercially available tetraphenyl borate (NaBPh4 ).

11.
Org Lett ; 25(21): 3916-3921, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37212481

ABSTRACT

We report a copper metallaphotocatalytic 1,2-difunctionalization of terminal alkynes with N-hydroxyphthalimide (NHP) esters and readily available silyl reagents (TMSCN and TMSNCS) to access stereodefined trisubstituted alkenes, including (E)-alkenyl nitriles and thiocyanates. The reaction proceeds with excellent anti-stereoselectivity and demonstrates broad compatibility with a wide range of terminal alkynes and NHP esters as alkyl radical precursors. Experimental and computational studies have been performed to gain insight into the reaction mechanism.

12.
Org Biomol Chem ; 21(20): 4220-4224, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37161505

ABSTRACT

The synthesis of (deuterated) 1,1-disubstituted alkenes via Pd-catalyzed decarboxylative hydroarylation of alkynyl carboxylic acids with arylboronic acids has been developed. The reaction features excellent regioselectivity, a broad substrate scope and gram-scale synthetic ability and offers a general synthetic method to synthesize 1,1-dideuterio olefins. Preliminary mechanism investigations indicate that 1,1-disubstituted alkenes are formed by hydroarylation of terminal alkynes generated by in situ decarboxylation of alkynyl carboxylic acids.

13.
Carbohydr Polym ; 314: 120940, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37173023

ABSTRACT

This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Starch , Starch/chemistry , Cellulose/chemistry , Zea mays/chemistry , Digestion , alpha-Amylases
14.
Int J Biol Macromol ; 237: 124187, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990406

ABSTRACT

In this work, Corn Starch (CS)-Lauric acid (LA) complexes prepared by different ultrasound times were explored for multi-scale structure and digestibility. The results showed that the average molecular weight of the CS decreased from 380.478 to 323.989 kDa and the transparency increased to 38.55 % after 30 min of ultrasound treatment. The scanning electron microscope (SEM) results revealed a rough surface and agglomeration of the prepared complexes. The complexing index of the CS-LA complexes increased by 14.03 % compared to the non-ultrasound group. The prepared CS-LA complexes formed a more ordered helical structure and a more dense V-shaped crystal structure through hydrophobic interactions and hydrogen bonding. In addition, fourier transforms infrared spectroscopy and the molecular docking revealed that the hydrogen bonds formed by CS and LA promoted the formation of an ordered structure of the polymer, retarding the diffusion of the enzyme and thus reducing the digestibility of the starch. With correlation analysis, we provided insight into the multi-scale structure-digestibility relationship in the CS-LA complexes, which provided a basis for the relationship between structure and digestibility of lipid-containing starchy foods.


Subject(s)
Starch , Starch/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Hydrogen Bonding , Molecular Weight
15.
Anal Bioanal Chem ; 415(18): 4333-4341, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36745239

ABSTRACT

Hydrogen peroxide (H2O2) is considered a significant biomarker in various diseases and could induce deleterious health problems at irregular physiological concentrations. Therefore, developing a simple, efficient biocompatible nanoprobe for trace amount H2O2 detection with high sensitivity and specificity is of great help for early diagnosis and therapeutics. Herein, we designed amphiphilic poly(styrene-co-maleic anhydride) (PMSA)-encapsulated nanoclusters composed of upconversion nanoparticles (UCNPs) and manganese dioxide nanoparticles (MnO2 NPs) at a specific ratio to produce a near-infrared (NIR) excited luminescent nanoprobe for H2O2 detection. Our results revealed that the MnO2 NPs tended to experience catalytic decomposition when exposed to H2O2, while the UCNPs were retained inside the PSMA encapsulation, causing recovery of the UCNP emission band at 470 nm in accordance with H2O2 concentration. This luminescence recovery was linearly dependent on H2O2 concentrations, yielding a limit of detection (LOD) of 20 nM. The easy-to-interpret H2O2 nanoprobe also proved high selectivity in the presence of other interfering substances, and biocompatibility and water-dispersibility, making it an ideal candidate for real-time detection of disease-related H2O2 in living organisms.


Subject(s)
Nanoparticles , Oxides , Hydrogen Peroxide , Manganese Compounds , Fluorescence Resonance Energy Transfer/methods , Polymers
16.
Int J Biol Macromol ; 234: 123695, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801275

ABSTRACT

In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.


Subject(s)
Camellia sinensis , Oryza , Oryza/chemistry , Tea , Cellulose , Starch/chemistry , Thermodynamics , Viscosity
17.
Int J Biol Macromol ; 224: 1313-1321, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36306903

ABSTRACT

High amylose corn starch (HACS)-oat ß-glucan (OBG) complex was prepared by ball milling treatment. The morphology and structure of the samples were characterized, and the digestibility of the samples was studied. SEM analysis showed that the grain structure of oat ß-glucan-starch after ball milling showed an irregular aggregate shape. The rheological results indicated that the apparent viscosity of the solution of HACS-OBG complex prepared by ball milling, with the values of both G' and G″ decreasing on the increase of OBG addition. Multi-scale structure analysis showed that the disorder of the crystal structure and short-range structure of the HACS-OBG complex would lead to the decrease of the double helix structure content. In terms of digestibility, the RDS of the complex decreased from 75.88 % to 66.26 %, which suppressed the digestibility of starch. Molecular docking and quantum chemistry techniques further demonstrated the strong hydrogen bond interaction between HACS and OBG and the inhibition rate of OBG on the enzyme, which was conducive to the slow digestion of HACS-OBG complex. Therefore, ball milling treatment can promote the binding of OBG to starch, which may be an effective method for postprandial blood glucose control.


Subject(s)
Starch , beta-Glucans , Starch/chemistry , Molecular Docking Simulation , beta-Glucans/chemistry , Amylose , Viscosity
18.
J Org Chem ; 87(21): 14879-14888, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36223839

ABSTRACT

The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.


Subject(s)
Alkynes , Palladium , Catalysis
19.
J Org Chem ; 87(9): 6471-6478, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35442691

ABSTRACT

This report describes a method for the deoxyfluorination of alcohols with KF as the fluorine source via in situ generation of highly active CF3SO2F. Diverse functionalities, including halogen, nitro, ketone, ester, alkene, and alkyne, are well tolerated. Mild conditions, a short reaction time, and a wide substrate scope make this method an excellent choice for the construction of C-F bonds.


Subject(s)
Alcohols , Fluorine , Alkenes , Fluorides/chemistry , Fluorine/chemistry
20.
Small ; 18(18): e2200911, 2022 05.
Article in English | MEDLINE | ID: mdl-35363427

ABSTRACT

Single atom sites (SAS) of FeN4 are clarified as one of the most active components for the oxygen reduction reaction (ORR). Effective strategies by engineering the local coordination environment and site density of FeN4 sites are crucial to further enhance the electrocatalytic ORR performance. Herein, the integration of a second metal of Mn with Fe to construct Fe&Mn/N-C catalysts with enhanced density of FeN4 active sites and modulated electronic structure is reported. The formation of MnN4 centers modulates the local environment of FeN4 sites and reserves more FeN4 embedded in carbon substrate by forming the possible FeN4 -O-MnN4 configurations. Density functional theory calculations demonstrate that the overall energy barrier of ORR is decreased over the FeN4 -O-MnN4 moieties. Therefore, the Fe&Mn/N-C catalyst exhibits enhanced ORR performance both in alkaline and acidic solution (half-wave potentials are 0.904 and 0.781 V). This work provides an effective strategy by modulating the local electronic structure and density of FeN4 active sites to improve the ORR activity and stability through Mn cooperation.


Subject(s)
Carbon , Oxygen , Catalysis , Oxygen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...