Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Discov Oncol ; 15(1): 275, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980440

ABSTRACT

BACKGROUND: Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS: We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS: The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS: Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.

2.
Small ; 19(26): e2300626, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929671

ABSTRACT

It is a challenge to develop adhesives simultaneously capable of strong adhesion and efficient switchable ability. Herein, the authors report multifunctional switchable adhesives named Cu2+ -curcumin-imidazole-polyurethane (CIPUs:Cu2+ ) by introducing 1-(3-aminopropyl) imidazole and curcumin into polyurethane system crossed by Cu2+ forming dynamic metal-ligand bonds. This CIPUs:Cu2+ has strong adhesion (up to 2.46 MPa) on various material surfaces due to their specially designed functional groups alike the secretions from mussels. It can achieve fast switching speed (30 s) and high switch efficiency through multiple contactless remote stimulations. Importantly, density functional theory (DFT) calculation reveals that such metal-ligand bonds consisting of two components: stronger Cu2+ -curcumin complexes and weaker Cu2+ -imidazole complexes can aggregate to form multi-level dynamic stable structure . The special structure can not only be acted as sacrificial sites for easily broken and reformed, allowing efficient switchable adhesion and enormous energy dissipation but also acted as firm sites to maintain the cohesion of the adhesive and the reversible reconstruction network. Intriguingly, the CIPUs:Cu2+ can achieve self-healing at room temperature without needing external stimuli. Overall, this strategy can further broaden the design of switchable adhesives in the fields of intelligent gadgets, wearable bio-monitoring devices, etc.

3.
ACS Appl Mater Interfaces ; 14(25): 29213-29222, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35714067

ABSTRACT

To alleviate the predicament of resource shortage and environmental pollution, efficiently using abundant solar energy is a great challenge. Herein, we prepared unique photothermal conversion phase-change materials, namely, CNT@PCMs, by introducing carbon nanotubes (CNTs) used as photothermal conversion materials into the recyclable matrix of phase-change materials (PCMs). These devised CNT@PCMs cleverly combine the photothermal conversion capability of CNTs and the thermal energy storage capability of traditional PCMs. Especially, the surface temperature of the prepared CNT@PCMs can be raised to 100 °C within 165 s under the solar simulator (150 mW cm-2), showing a surprising heating rate that is much higher than that of the reported works and achieving a higher photothermal conversion efficiency for solar energy in this work. Furthermore, these CNT@PCMs can hold high melting latent heat with a maximum value at 110.0 J g-1, exhibiting remarkable thermal storage ability aside from preeminent photothermal conversion capability. Intriguingly, the introduction of dynamic oxime group-carbamate bonds into the molecular structure can endow CNT@PCMs with an outstanding self-healing performance and recyclability. The broken CNT@PCMs sample can be healed in 2 min under IR-laser irradiation. Importantly, the phase-change and mechanical properties and photothermal conversion efficiency of CNT@PCMs can also remain virtually unchanged after multiple recycles. It is of great significance to design this style of CNT@PCMs for achieving the efficient utilization of solar energy and environmental protection.

4.
Curr Stem Cell Res Ther ; 17(4): 317-327, 2022.
Article in English | MEDLINE | ID: mdl-35352667

ABSTRACT

BACKGROUND: Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE: The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS: We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS: This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION: EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.


Subject(s)
Extracellular Vesicles , MicroRNAs , Spinal Cord Injuries , Animals , Cell Communication , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Neuroprotection , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/therapy
5.
Clin Spine Surg ; 35(6): 276-286, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34694259

ABSTRACT

STUDY DESIGN: A meta-analysis. OBJECTIVE: The aim is to compare the efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in treating Kümmell's disease (KD) without neurological deficits. SUMMARY OF BACKGROUND DATA: PVP and PKP are routine methods for the treatment of KD without neurological deficits; however, whether PVP or PKP is superior is a matter of debate. MATERIALS AND METHODS: According to the Cochrane Handbook for Systematic Reviews of Interventions, PubMed, Embase, the Cochrane Library, and Web of Knowledge were searched for eligible randomized controlled trials or cohort studies. Two authors independently collected data and assessed the methodologic quality of the included studies. Intraoperative and postoperative clinical outcomes, cement leakage, refracture rate, and the costs during hospitalization were evaluated. RESULTS: Five observational studies comparing 119 PVP and 128 PKP patients were included in qualitative and quantitative reviews. All of the included s studies had evidence of good quality, as assessed by the Newcastle-Ottawa scale. On the basis of meta-analysis the operation time [weighted mean difference: -10.65; 95% confidence interval (95% CI): -11.94 to -9.35; P <0.00001] and hospitalization cost (weighted mean difference: -2.38; 95% CI: -2.87 to -1.89; P <0.00001) were less for PVP, while the cement leakage rate was lower for PKP (odds ratio: 3.03; 95% CI: 1.58-5.82; P <0.001). Together, the data indicated that the differences in cement volume, visual analog scale score, Oswestry disability index score, Cobb angle, anterior vertebral height, and refracture rate were not significantly different. CONCLUSION: The findings of this study suggest that PVP and PKP are safe and effective for the treatment of KD. PVP required less operative time and was more affordable, but PKP was superior given the lower cement leakage rate. Additional high-quality randomized controlled trials designed to support these findings are warranted.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Spondylosis , Vertebroplasty , Bone Cements/therapeutic use , Fractures, Compression/surgery , Humans , Kyphoplasty/methods , Osteoporotic Fractures/surgery , Retrospective Studies , Spinal Fractures/surgery , Systematic Reviews as Topic , Treatment Outcome , Vertebroplasty/methods
6.
ACS Appl Mater Interfaces ; 13(39): 46518-46525, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34554721

ABSTRACT

High energy density lithium-ion batteries with preferable cycling stability are critical for the development of all-electric vehicles. Silicon (Si) has demonstrated a remarkable potential for application as anode materials due to its superior capacity performance and worldwide abundance. However, Si intrinsically undergoes substantial volume fluctuation during repeated lithiation/delithiation processes, which pulverizes the Si particles and undermines the integrity of the electrode structures, thus resulting in frustrating cycling stability. We developed a polymer binder with a highly stretchable and elastic network structure that can accommodate volume variation of Si. This was realized by an in situ cross-linking of polyacrylic acid (PAA) with isocyanate-terminated polyurethane oligomers that consist of polyethylene glycol (PEG) chains and 2-ureido-4-pyrimidinone (UPy) moieties through the reaction between isocyanate and carboxyl during the electrode preparation process. In this binder network, PAA could strongly adhere to the Si particles by forming hydrogen bonding with the surface hydroxyl groups. The PEG chains induce the flexibility of the polymer network, while the UPy moieties endow the polymer network with desirable mechanical strength through the formation of reversible and strong quadruple H-bonding cross-linkers. This binder not only can sufficiently accommodate the volume change of Si but can also provide a strong mechanical support to effectively sustain the integrity for the Si anode, consequently enhancing cycle stability and rate performance.

7.
J Orthop Translat ; 24: 121-130, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32913710

ABSTRACT

Stem cells are considered to be one of the greatest potential treatments to cure degenerative diseases. Stem cells injection for knee osteoarthritis (OA) is still a relatively new treatment and has not yet gained popularity. So, the effectiveness, safety and potential of mesenchymal stem cells (MSCs) for knee OA treatment is worthy to be explored. Explore the effectiveness and safety of mesenchymal stem cells (MSCs) in the treatment of knee osteoarthritis. We collected clinical trials using MSCs as treatment for knee OA (before April 2019), including randomized controlled trials (RCTs), retrospective studies and cohort studies. We searched PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (Mesenchymal stem cells [MSCs], Knee osteoarthritis, Effectiveness and Safety), and then performed a systematic review and cumulative metaanalysis of all RCTs and retrospective comparative studies. To evaluate the effectiveness and safety of MSC in knee OA treatment, we applied visual analog scale score, Western Ontario and McMaster Universities Osteo-arthritis Index and adverse events. We included 15 RCTs, two retrospective studies and two cohort studies including a total of 584 knee OA patients in this study. We demonstrated that MSC treatment could significantly decrease visual analog scale in a 12-month follow-up study compared with controls (p < 0.001). MSC therapy also showed significant decreases in Western Ontario and McMaster Universities Osteoarthritis Index scores after the 6-month follow-up (p < 0.001). MSC therapy showed no difference compared with controls (p > 0.05) in adverse events. We suggest that MSC therapy could serve as an effective and safe therapy for clinical application in OA treatment. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study provided the best available evidence and a wider perspective to MSCs application in the management of knee OA. MSCs therapy will have great translational potential in the clinical treatment of various degenerative diseases once optimum formula and explicit target population are identified.

8.
Front Mol Biosci ; 7: 608368, 2020.
Article in English | MEDLINE | ID: mdl-33425993

ABSTRACT

Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated with poor prognosis. Immunotherapy may provide new insights into clinical treatment strategies for OS. The purpose of this study was to identify immune-related genes that could predict OS prognosis. The gene expression profiles and clinical data of 84 OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. According to non-negative matrix factorization, two molecular subtypes of immune-related genes, C1 and C2, were acquired, and 597 differentially expressed genes between C1 and C2 were identified. Univariate Cox analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection operator (LASSO)-Cox regression were used to construct a 4-gene signature as a prognostic risk model. The results showed that high FKBP11 expression was correlated with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was associated with low risk (protective factors). The testing cohort and entire TARGET cohort were used for internal verification, and the independent GSE21257 cohort was used for external validation. The study suggested that the model we constructed was reliable and performed well in predicting OS risk. The functional enrichment of the signature was studied through gene set enrichment analysis, and it was found that the risk score was related to the immune pathway. In summary, our comprehensive study found that the 4-gene signature could be used to predict OS prognosis, and new biomarkers of great significance for understanding the therapeutic targets of OS were identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...