Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Med Virol ; 96(3): e29520, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528837

ABSTRACT

The evolution of SARS-CoV-2 paired with immune imprinting by prototype messenger RNA (mRNA) vaccine has challenged the current vaccination efficacy against newly emerged Omicron subvariants. In our study, we investigated a cohort of macaques infected by SIV and vaccinated with two doses of bivalent Pfizer mRNA vaccine containing wildtype and BA.5 spikes. Using a pseudotyped lentivirus neutralization assay, we determined neutralizing antibody (nAb) titers against new XBB variants, i.e., XBB.1.5, XBB.1.16, and XBB.2.3, alongside D614G and BA.4/5. We found that compared to humans vaccinated with three doses of monovalent mRNA vaccine plus a bivalent booster, the monkeys vaccinated with two doses of bivalent mRNA vaccines exhibited relatively increased titers against XBB subvariants. Of note, SIV-positive dam macaques had reduced nAb titers relative to SIV-negative dams. Additionally, SIV positive dams that received antiretroviral therapy had lower nAb titers than untreated dams. Our study underscores the importance of reformulating the COVID-19 vaccine to better protect against newly emerged XBB subvariants as well as the need for further investigation of vaccine efficacy in individuals living with HIV-1.


Subject(s)
COVID-19 , mRNA Vaccines , Humans , Animals , Macaca mulatta , Vaccines, Combined , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , RNA, Messenger , Antibodies, Viral
2.
Am J Pathol ; 193(12): 2031-2046, 2023 12.
Article in English | MEDLINE | ID: mdl-37689386

ABSTRACT

The pathophysiology of long-recognized hematologic abnormalities in Ebolavirus (EBOV) disease (EVD) is unknown. From limited human sampling (of peripheral blood), it has been postulated that emergency hematopoiesis plays a role in severe EVD, but the systematic characterization of the bone marrow (BM) has not occurred in human disease or in nonhuman primate models. In a lethal rhesus macaque model of EVD, 18 sternal BM samples exposed to the Kikwit strain of EBOV were compared to those from uninfected controls (n = 3). Immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy showed that EBOV infects BM monocytes/macrophages and megakaryocytes. EBOV exposure was associated with severe BM hypocellularity, including depletion of myeloid, erythroid, and megakaryocyte hematopoietic cells. These depletions were negatively correlated with cell proliferation (Ki67 expression) and were not associated with BM apoptosis during disease progression. In EBOV-infected rhesus macaques with terminal disease, BM showed marked hemophagocytosis, megakaryocyte emperipolesis, and the release of immature hematopoietic cells into the sinusoids. Collectively, these data demonstrate not only direct EBOV infection of BM monocytes/macrophages and megakaryocytes but also that disease progression is associated with hematopoietic failure, notably in peripheral cytopenia. These findings inform current pathophysiologic unknowns and suggest a crucial role for BM dysfunction and/or failure, including emergency hematopoiesis, as part of the natural history of severe human disease.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Ebolavirus/physiology , Macaca mulatta , Bone Marrow , Disease Progression
3.
J Infect Dis ; 228(4): 371-382, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37279544

ABSTRACT

BACKGROUND: Ebola virus (EBOV) disease (EVD) is one of the most severe and fatal viral hemorrhagic fevers and appears to mimic many clinical and laboratory manifestations of hemophagocytic lymphohistiocytosis syndrome (HLS), also known as macrophage activation syndrome. However, a clear association is yet to be firmly established for effective host-targeted, immunomodulatory therapeutic approaches to improve outcomes in patients with severe EVD. METHODS: Twenty-four rhesus monkeys were exposed intramuscularly to the EBOV Kikwit isolate and euthanized at prescheduled time points or when they reached the end-stage disease criteria. Three additional monkeys were mock-exposed and used as uninfected controls. RESULTS: EBOV-exposed monkeys presented with clinicopathologic features of HLS, including fever, multiple organomegaly, pancytopenia, hemophagocytosis, hyperfibrinogenemia with disseminated intravascular coagulation, hypertriglyceridemia, hypercytokinemia, increased concentrations of soluble CD163 and CD25 in serum, and the loss of activated natural killer cells. CONCLUSIONS: Our data suggest that EVD in the rhesus macaque model mimics pathophysiologic features of HLS/macrophage activation syndrome. Hence, regulating inflammation and immune function might provide an effective treatment for controlling the pathogenesis of acute EVD.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Animals , Macrophage Activation Syndrome/therapy , Macaca mulatta
4.
Nat Commun ; 13(1): 4823, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973985

ABSTRACT

Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Viral Load , Viremia/drug therapy
5.
Pediatr Res ; 91(1): 21-26, 2022 01.
Article in English | MEDLINE | ID: mdl-33731810

ABSTRACT

Tuberculosis (TB) is an increasing global emergency in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients, in which host immunity is dysregulated and compromised. However, the pathogenesis and efficacy of therapeutic strategies in HIV-associated TB in developing infants are essentially lacking. Bacillus Calmette-Guerin vaccine, an attenuated live strain of Mycobacterium bovis, is not adequately effective, which confers partial protection against Mycobacterium tuberculosis (Mtb) in infants when administered at birth. However, pediatric HIV infection is most devastating in the disease progression of TB. It remains challenging whether early antiretroviral therapy (ART) could maintain immune development and function, and restore Mtb-specific immune function in HIV-associated TB in children. A better understanding of the immunopathogenesis in HIV-associated pediatric Mtb infection is essential to provide more effective interventions, reducing the risk of morbidity and mortality in HIV-associated Mtb infection in infants. IMPACT: Children living with HIV are more likely prone to opportunistic infection, predisposing high risk of TB diseases. HIV and Mtb coinfection in infants may synergistically accelerate disease progression. Early ART may probably induce immune reconstitution inflammatory syndrome and TB pathology in HIV/Mtb coinfected infants.


Subject(s)
AIDS-Related Opportunistic Infections/complications , Tuberculosis/complications , AIDS-Related Opportunistic Infections/immunology , Anti-Retroviral Agents/therapeutic use , Child , HIV Infections/drug therapy , Humans , Tuberculosis/immunology
6.
Viruses ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34960667

ABSTRACT

The HIV reservoir size in target CD4+ T cells during primary infection remains unknown. Here, we sorted peripheral and intestinal CD4+ T cells and quantified the levels of cell-associated SIV RNA and DNA in rhesus macaques within days of SIVmac251 inoculation. As a major target cell of HIV/SIV, CD4+ T cells in both tissues contained a large amount of SIV RNA and DNA at day 8-13 post-SIV infection, in which productive SIV RNA highly correlated with the levels of cell-associated SIV DNA. Memory CD4+ T cells had much higher viral RNA and DNA than naïve subsets, yet memory CD4+ T cells co-expressing CCR5 had no significant reservoir size compared with those that were CCR5-negative in blood and intestine. Collectively, memory CD4+ T cells appear to be the major targets for primary infection, and viral reservoirs are equally distributed in systemic and lymphoid compartments in acutely SIV-infected macaques.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Intestines/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Intestines/immunology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Viral Load
7.
Front Immunol ; 12: 652223, 2021.
Article in English | MEDLINE | ID: mdl-34367128

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious and presents a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in treating COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its various mutants. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody (NAbs) that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein and is therefore more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G, N501Y, and E484K mutants. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently reported CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.


Subject(s)
COVID-19/immunology , Gene Expression Regulation/immunology , Killer Cells, Natural/immunology , Receptors, Chimeric Antigen/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , A549 Cells , COVID-19/genetics , COVID-19/pathology , COVID-19/therapy , Gene Expression Regulation/genetics , Hep G2 Cells , Humans , Receptors, Chimeric Antigen/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Front Microbiol ; 12: 666227, 2021.
Article in English | MEDLINE | ID: mdl-34262540

ABSTRACT

Host metabolism has recently gained more attention for its roles in physiological functions and pathologic conditions. Of these, metabolic tryptophan disorders generate a pattern of abnormal metabolites that are implicated in various diseases. Here, we briefly highlight the recent advances regarding abnormal tryptophan metabolism in HIV and Mycobacterium tuberculosis infection and discuss its potential impact on immune regulation, disease progression, and neurological disorders. Finally, we also discuss the potential for metabolic tryptophan interventions toward these infectious diseases.

9.
Viruses ; 13(2)2021 02 21.
Article in English | MEDLINE | ID: mdl-33670027

ABSTRACT

Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Proviruses/genetics , Animals , Anti-Retroviral Agents/therapeutic use , DNA, Viral/genetics , DNA, Viral/metabolism , HIV Infections/drug therapy , Humans , Proviruses/physiology , Viral Load , Virus Latency
10.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33568508

ABSTRACT

Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antiretroviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection, SHIV.C.CH848 infection established viral reservoirs in CD4+ T cells and myeloid cells, accompanied by productive infection and depletion of CD4+ T cells in systemic and lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed viral replication, integrated proviral DNA levels remained stable, especially in CD4+ T cells, and the viral rebound was also observed after ART interruption. Autologous neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with limited viral evolution at 5 months postinfection. In comparison, heterogenous neutralizing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1 of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a novel class of transmitted/founder SHIVs, can establish sustained viremia and viral reservoirs in rhesus macaques with clinical immunodeficiency consequences, providing a valuable SHIV model for HIV research.IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F) SHIVC infection of macaques more closely recapitulates the virological and clinical features of HIV infection, including persistent viremia and viral rebound once antiretroviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain is valuable for testing responses to HIV vaccines and therapeutics.


Subject(s)
Disease Models, Animal , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Animals , Anti-Retroviral Agents/therapeutic use , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1 , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus , Viral Load/drug effects , Viremia/drug therapy
11.
FASEB J ; 35(2): e21282, 2021 02.
Article in English | MEDLINE | ID: mdl-33484474

ABSTRACT

Cellular viral reservoirs are rapidly established in tissues upon HIV-1/SIV infection, which persist throughout viral infection, even under long-term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut-associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV-1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4ß7 antibody or α4ß7/α4ß1 dual antagonist TR-14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post-SIV inoculation. The results showed that blockade of α4ß7/α4ß1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell-associated SIV RNA/DNA to controls. Surprisingly, TR-14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV-1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Simian Acquired Immunodeficiency Syndrome/drug therapy , Animals , Antibodies, Neutralizing/immunology , Integrins/immunology , Lymphoid Tissue/virology , Macaca mulatta , Mucous Membrane/metabolism , Mucous Membrane/virology , Phenylalanine/therapeutic use , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology , Virus Replication
12.
bioRxiv ; 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33469580

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious presenting a significant public health issue. Current therapies used to treat coronavirus disease 2019 (COVID-19) include monoclonal antibody cocktail, convalescent plasma, antivirals, immunomodulators, and anticoagulants, though the current therapeutic options remain limited and expensive. The vaccines from Pfizer and Moderna have recently been authorized for emergency use, which are invaluable for the prevention of SARS-CoV-2 infection. However, their long-term side effects are not yet to be documented, and populations with immunocompromised conditions (e.g., organ-transplantation and immunodeficient patients) may not be able to mount an effective immune response. In addition, there are concerns that wide-scale immunity to SARS-CoV-2 may introduce immune pressure that could select for escape mutants to the existing vaccines and monoclonal antibody therapies. Emerging evidence has shown that chimeric antigen receptor (CAR)- natural killer (NK) immunotherapy has potent antitumor response in hematologic cancers with minimal adverse effects in recent studies, however, the potentials of CAR-NK cells in preventing and treating severe cases of COVID-19 has not yet been fully exploited. Here, we improve upon a novel approach for the generation of CAR-NK cells for targeting SARS-CoV-2 and its D614G mutant. CAR-NK cells were generated using the scFv domain of S309 (henceforward, S309-CAR-NK), a SARS-CoV and SARS-CoV-2 neutralizing antibody that targets the highly conserved region of SARS-CoV-2 spike (S) glycoprotein, therefore would be more likely to recognize different variants of SARS-CoV-2 isolates. S309-CAR-NK cells can specifically bind to pseudotyped SARS-CoV-2 virus and its D614G mutant. Furthermore, S309-CAR-NK cells can specifically kill target cells expressing SARS-CoV-2 S protein in vitro and show superior killing activity and cytokine production, compared to that of the recently published CR3022-CAR-NK cells. Thus, these results pave the way for generating 'off-the-shelf' S309-CAR-NK cells for treatment in high-risk individuals as well as provide an alternative strategy for patients unresponsive to current vaccines.

13.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33408173

ABSTRACT

The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies.IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.


Subject(s)
DNA, Viral/metabolism , Proviruses/physiology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Activation , Animals , Anti-Retroviral Agents/therapeutic use , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/virology , DNA, Viral/drug effects , Leukocytes, Mononuclear/virology , Lymph Nodes/virology , Macaca mulatta , Proviruses/drug effects , RNA, Viral/blood , RNA, Viral/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Viral Load/drug effects , Viremia/drug therapy , Viremia/virology
14.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31969435

ABSTRACT

A robust simian-human immunodeficiency virus (SHIV)-macaque model of latency is critical to investigate eradicative and suppressive strategies that target HIV-1 Env. To this end, we previously reported a novel strategy for constructing SHIVs that bear primary or transmitted/founder (TF) Envs with modifications at Env residue 375 that enable efficient replication in Indian rhesus macaques (RM). Such TF SHIVs, however, have not been examined for their suitability for HIV-1 latency and cure research. Here, we evaluate two promising TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which encode TF subtype D and C HIV-1 Envs, respectively, for their viral kinetics and persistence during suppressive combination antiretroviral therapy (cART) and treatment interruption in RM. Our results suggest that the viral kinetics of these SHIVs in RM during acute, early, and chronic infection, and upon cART initiation, maintenance and discontinuation, mirror those of HIV-1 infection. We demonstrate consistent early peak and set point viremia, rapid declines in viremia to undetectable plasma titers following cART initiation, infection of long-lived cellular subsets and establishment of viral latency, and viral rebound with return to pretreatment set point viremia following treatment interruption. The viral dynamics and reservoir biology of SHIV.D.191859, and to a lesser extent SHIV.C.CH848, during chronic infection, cART administration, and upon treatment interruption suggest that these TF SHIVs are promising reagents for a SHIV model of HIV-1 latency and cure.IMPORTANCE Simian-human immunodeficiency viruses (SHIVs) have been successfully used for over 2 decades to study virus-host interactions, transmission, and pathogenesis in rhesus macaques. The majority of Env trimers of most previously studied SHIVs, however, do not recapitulate key properties of transmitted/founder (TF) or primary HIV-1 isolates, such as CCR5 tropism, tier 2 neutralization resistance, and native trimer conformation. Here, we test two recently generated TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which were designed to address these issues as components of a nonhuman primate model of HIV-1 latency. We conclude that the TF SHIV-macaque model reflects several hallmarks of HIV and SIV infection and latency. Results suggest that this model has broad applications for evaluating eradicative and suppressive strategies against the HIV reservoir, including Env-specific interventions, therapeutic vaccines, and engineered T cells.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Latency/physiology , Virus Replication/physiology , Animals , Anti-Retroviral Agents/therapeutic use , Disease Models, Animal , HIV Infections/complications , HIV-1/drug effects , Kinetics , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/complications , Simian Immunodeficiency Virus/genetics , Tropism , Viremia , env Gene Products, Human Immunodeficiency Virus
16.
FASEB J ; 33(8): 8905-8912, 2019 08.
Article in English | MEDLINE | ID: mdl-31034775

ABSTRACT

C-C chemokine receptor 5 (CCR5) plays an essential role in HIV pathogenesis as the major coreceptor on CD4+ T cells used by HIV, yet the function of CCR5 on CD8 T cells is not well understood. Furthermore, the immunologic effects of the CCR5 inhibitor maraviroc (MVC), despite approval for clinical use, have not yet been well evaluated for their potential effects on cytotoxic T-cell responses. In this study, we characterized the development and function of CCR5+CD8+ T cells in rhesus macaques with or without Simian immunodeficiency virus (SIV) infection. We also investigated the effects of the CCR5 antagonist MVC on functional CCR5+CD8+ T-cell responses in vitro. The data show that CCR5+CD8+ T cells have an effector memory phenotype and increase with age in systemic and mucosal lymphoid tissues as a heterogeneous population of polyfunctional CD8 T cells. In addition, CCR5 is highly expressed on SIV gag-specific (CM9+) CD8+ T cells in SIV-infected macaques, yet CCR5+CD8+ T cells are significantly reduced in mucosal lymphoid tissues with disease progression. Furthermore, in vitro MVC treatment reduced activation and cytokine secretion of CD8+ T cells via a CCR5-independent pathway. These findings suggest that surface CCR5 protein plays an important role in differentiation and activation of CD8+ T cells. Although MVC may be helpful in reducing chronic inflammation and activation, it may also inhibit virus-specific CD8+ T-cell responses. Thus optimal use of CCR5 antagonists either alone or in combination with other drugs should be defined by further investigation.-Wang, X., Russell-Lodrigue, K. E., Ratterree, M. S., Veazey, R. S., Xu, H. Chemokine receptor CCR5 correlates with functional CD8+ T cells in SIV-infected macaques and the potential effects of maraviroc on T-cell activation.


Subject(s)
CCR5 Receptor Antagonists/pharmacology , CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation , Maraviroc/pharmacology , Receptors, CCR5/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , Cells, Cultured , Humans , Jurkat Cells , Macaca mulatta
17.
J Immunol ; 201(7): 1994-2003, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30104244

ABSTRACT

Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , HIV Infections/immunology , HIV/immunology , Lymph Nodes/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Animals, Newborn , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Humans , Immunity, Humoral , Immunologic Memory , Lymphocyte Activation , Paracrine Communication , Viremia
18.
Front Immunol ; 9: 159, 2018.
Article in English | MEDLINE | ID: mdl-29449847

ABSTRACT

The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Germinal Center/immunology , Lymphoid Tissue/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Germinal Center/virology , HIV Infections/immunology , Histone Code , Lymphoid Tissue/virology , Macaca mulatta , Mice
19.
J Med Primatol ; 47(1): 35-39, 2018 02.
Article in English | MEDLINE | ID: mdl-28585307

ABSTRACT

BACKGROUND: Our previous study suggested newborns have competent immune systems with the potential to respond to foreign antigens and vaccines. In this study, we examined infant immune responses to tetanus toxoid (TT) vaccination in the presence of maternal antibody to TT. METHODS: We examined changes in plasma levels of tetanus toxoid-specific IgG1 (anti-TT IgG1) in a total of eight infant rhesus macaques from birth through 6 months of age using a commercial Monkey Anti-TT IgG1 ELISA kit. RESULTS: A significant correlation between anti-TT IgG1 levels in vaccinated dams and their paired newborn infants was detected in control (non-vaccinated) infants as previously reported. Maternal anti-TT IgG1 levels declined rapidly within 1 month of birth in non-vaccinated infants (n=4). In four infants vaccinated with TT at birth, we found two had rapid and robust antibody responses to vaccination. Interestingly, the other two first showed declining TT antibody levels for 2 weeks followed by increasing levels without additional vaccine boosts, indicating all four had good antibody responses to primary TT vaccination at birth, despite the presence of high levels of maternal antibodies to TT in all four infants. CONCLUSIONS: Our data indicate that newborn macaques have competent immune systems that are capable of generating their own primary antibody responses to vaccination, at least to tetanus antigens. Maternal antibodies thus do not significantly impair antibody response to the vaccination, even when received on the day of birth in infant rhesus macaques.


Subject(s)
Antibodies, Bacterial/immunology , Bordetella pertussis/immunology , Immunity, Maternally-Acquired/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Tetanus Toxoid/immunology , Animals , Antibodies, Bacterial/blood , Autoantigens/blood , Autoantigens/immunology , Female , Immunoglobulin G/blood , Vaccination
20.
Sci Rep ; 7(1): 15611, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142313

ABSTRACT

Exosomes are small extracellular vesicles (EVs), released by a wide variety of cell types, carry donor origin-proteins, cytokines, and nucleic acids, transport these cargos to adjacent or distant specific recipient cells, and thereby regulate gene expression and activation of target cells. In this study, we isolated and identified exosomes in rhesus macaques, and investigated their effects on cell tropism and activation, especially their potential to reactivate HIV latency. The results indicated that plasma-derived exosomes preferentially fuse to TCR-activated T cells and autologous parent cells. Importantly, the uptake of exosomes, derived from IL-2 stimulated CD4+ T cells, effectively promoted reactivation of resting CD4+ T-cell, as indicated by an increased viral transcription rate in these cells. These findings provide premise for the potential application of exosome in the reactivation of HIV latency, in combination its use as functional delivery vehicles with antiretroviral therapy (ART).


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Exosomes/virology , HIV Infections/genetics , HIV-1/genetics , Animals , CD4-Positive T-Lymphocytes/virology , Exosomes/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Latency Period, Psychological , Macaca mulatta/virology , Virus Activation/genetics , Virus Latency/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...