Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Phytother Res ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761036

ABSTRACT

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

2.
Article in English | MEDLINE | ID: mdl-38597996

ABSTRACT

We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.

3.
Phytomedicine ; 128: 155501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471318

ABSTRACT

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Subject(s)
Bone Resorption , Cell Differentiation , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoblasts , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoclasts/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Osteoporosis/drug therapy , Osteoblasts/drug effects , Female , RAW 264.7 Cells , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Ovariectomy , RANK Ligand , Rats , Osteogenesis/drug effects , Disease Models, Animal , STAT3 Transcription Factor/metabolism
4.
J Nanobiotechnology ; 21(1): 476, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082443

ABSTRACT

The present work was an endeavor to shed light on how mild photothermia possibly synergizes with immune checkpoint inhibition for tumor therapy. We established mild photothermal heating protocols to generate temperatures of 43 °C and 45 °C in both in vitro and in vivo mouse 4T1 triple-negative breast cancer (TNBC) models using polyglycerol-coated carbon nanohorns (CNH-PG) and 808 nm laser irradiation. Next, we found that 1) CNH-PG-mediated mild photothermia (CNH-PG-mPT) significantly increased expression of the immune checkpoint PD-L1 and type-1 macrophage (M1) markers in the TNBC tumors; 2) CNH-PG-mPT had a lower level of anti-tumor efficacy which was markedly potentiated by BMS-1, a PD-L1 blocker. These observations prompted us to explore the synergetic mechanisms of CNH-PG-mPT and BMS-1 in the context of tumor cell-macrophage interactions mediated by PD-L1 since tumor-associated macrophages (TAMs) are a major source of PD-L1 expression in tumors. In vitro, the study then identified two dimensions where BMS-1 potentiated CNH-PG-mPT. First, CNH-PG-mPT induced PD-L1 upregulation in the tumor cells and showed a low level of cytotoxicity which was potentiated by BMS-1. Second, CNH-PG-mPT skewed TAMs towards an M1-like anti-tumor phenotype with upregulated PD-L1, and BMS-1 bolstered the M1-like phenotype. The synergistic effects of BMS-1 and CNH-PG-mPT both on the tumor cells and TAMs were more pronounced when the two cell populations were in co-culture. Further in vivo study confirmed PD-L1 upregulation both in tumor cells and TAMs in the TNBC tumors following treatment of CNH-PG-mPT. Significantly, TAMs depletion largely abolished the anti-TNBC efficacy of CNH-PG-mPT alone and in synergy with BMS-1. Collectively, our findings reveal PD-L1 upregulation to be a key response of TNBC to mild photothermal stress, which plays a pro-survival role in the tumor cells while also acting as a brake on the M1-like activation of the TAMs. Blockade of mPT­induced PD­L1 achieves synergistic anti-TNBC efficacy by taking the intrinsic survival edge off the tumor cells on one hand and taking the brakes off the M1-like TAMs on the other. Our findings reveal a novel way (i.e. mild thermia plus PD-L1 blockade) to modulate the TAMs-tumor cell interaction to instigate a mutiny of the TAMs against their host tumor cells.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Photothermal Therapy , Macrophages/metabolism , Phenotype , Cell Line, Tumor
5.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Article in English | MEDLINE | ID: mdl-37567571

ABSTRACT

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Subject(s)
Ferroptosis , Macrophages , Immunotherapy , Iron , Nanotechnology , Tumor Microenvironment
6.
Drug Deliv ; 30(1): 2219429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37264811

ABSTRACT

Sonodynamic therapy (SDT) has aroused great interest for its potential in the treatment of glioblastoma (GBM). SDT relies on tumor-selective accumulation of a sonosensitizer that is activated by ultrasound irradiation (UI) to generate cytotoxic actions. The efficacy of GBM-SDT depends on sufficient sonosensitizer buildup in the tumor, which is, however, seriously hampered by the anatomical and biochemical barriers of the GBM. To overcome this difficulty, we herein propose a delivery strategy of 'platelets with ultrasound-triggered release property', which takes advantage of 1) the platelets' ability to carry cargo and release cargo upon activation, and 2) the ROS-generating property of SDT. To provide proof of concept for the strategy, we first stably loaded platelets with IOPD-Ce6, a nano-formed sonosensitizer consisting of iron oxide nanoparticles coated with polyglycerol and doxorubicin and loaded with chlorine e6. UI of the IOPD-Ce6-loaded platelets (IOPD-Ce6@Plt) elicited ROS generation in the IOPD-Ce6@Plt, which were immediately activated to release IOPD-Ce6 into GBM cells in co-culture which, when subjected to a second time of UI, exhibited pronounced ROS production, DNA injury, viability loss, and cell death in the GBM cells. In the in vivo experiments, mice bearing intracranial GBM grafts exhibited substantial tumor distribution of IOPD-Ce6 following intravenous injection of IOPD-Ce6@Plt and subsequent UI at the tumor site. The GBM grafts then exhibited pronounced cell injury and death after another round of UI of the tumors. Finally, the growth of intra-cranial GBM grafts was significantly slowed when an SDT protocol consisting of an intravenous IOPD-Ce6@Plt injection followed by multiple times of tumor UI had been applied twice to the mice. Our results are strong evidence for the idea that platelets are sound and amenable carriers to deliver sonosensitizers in the GBM in an ultrasound-triggered manner and thus to produce highly targeted and effective SDT of GBM.


Subject(s)
Glioblastoma , Animals , Mice , Glioblastoma/drug therapy , Drug Liberation , Reactive Oxygen Species , Cell Line, Tumor , Ultrasonography
7.
Cancers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37296961

ABSTRACT

BACKGROUND: Accurate prediction of lymph node metastasis (LNM) status in patients with muscle-invasive bladder cancer (MIBC) before radical cystectomy can guide the use of neoadjuvant chemotherapy and the extent of pelvic lymph node dissection. We aimed to develop and validate a weakly-supervised deep learning model to predict LNM status from digitized histopathological slides in MIBC. METHODS: We trained a multiple instance learning model with an attention mechanism (namely SBLNP) from a cohort of 323 patients in the TCGA cohort. In parallel, we collected corresponding clinical information to construct a logistic regression model. Subsequently, the score predicted by the SBLNP was incorporated into the logistic regression model. In total, 417 WSIs from 139 patients in the RHWU cohort and 230 WSIs from 78 patients in the PHHC cohort were used as independent external validation sets. RESULTS: In the TCGA cohort, the SBLNP achieved an AUROC of 0.811 (95% confidence interval [CI], 0.771-0.855), the clinical classifier achieved an AUROC of 0.697 (95% CI, 0.661-0.728) and the combined classifier yielded an improvement to 0.864 (95% CI, 0.827-0.906). Encouragingly, the SBLNP still maintained high performance in the RHWU cohort and PHHC cohort, with an AUROC of 0.762 (95% CI, 0.725-0.801) and 0.746 (95% CI, 0.687-0.799), respectively. Moreover, the interpretability of SBLNP identified stroma with lymphocytic inflammation as a key feature of predicting LNM presence. CONCLUSIONS: Our proposed weakly-supervised deep learning model can predict the LNM status of MIBC patients from routine WSIs, demonstrating decent generalization performance and holding promise for clinical implementation.

8.
Cancers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37370808

ABSTRACT

(1) Background: The Fuhrman grading (FG) system is widely used in the management of clear cell renal cell carcinoma (ccRCC). However, it is affected by observer variability and irreproducibility in clinical practice. We aimed to use a deep learning multi-class model called SSL-CLAM to assist in diagnosing the FG status of ccRCC patients using digitized whole slide images (WSIs). (2) Methods: We recruited 504 eligible ccRCC patients from The Cancer Genome Atlas (TCGA) cohort and obtained 708 hematoxylin and eosin-stained WSIs for the development and internal validation of the SSL-CLAM model. Additionally, we obtained 445 WSIs from 188 ccRCC eligible patients in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort as an independent external validation set. A human-machine fusion approach was used to validate the added value of the SSL-CLAM model for pathologists. (3) Results: The SSL-CLAM model successfully diagnosed the five FG statuses (Grade-0, 1, 2, 3, and 4) of ccRCC, and achieved AUCs of 0.917 and 0.887 on the internal and external validation sets, respectively, outperforming a junior pathologist. For the normal/tumor classification (Grade-0, Grade-1/2/3/4) task, the SSL-CLAM model yielded AUCs close to 1 on both the internal and external validation sets. The SSL-CLAM model achieved a better performance for the two-tiered FG (Grade-0, Grade-1/2, and Grade-3/4) task, with AUCs of 0.936 and 0.915 on the internal and external validation sets, respectively. The human-machine diagnostic performance was superior to that of the SSL-CLAM model, showing promising prospects. In addition, the high-attention regions of the SSL-CLAM model showed that with an increasing FG status, the cell nuclei in the tumor region become larger, with irregular contours and increased cellular pleomorphism. (4) Conclusions: Our findings support the feasibility of using deep learning and human-machine fusion methods for FG classification on WSIs from ccRCC patients, which may assist pathologists in making diagnostic decisions.

9.
Adv Mater ; 35(35): e2301479, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37243974

ABSTRACT

Boron neutron capture therapy (BNCT) has emerged as a treatment modality with high precision and efficacy of intractable tumors. At the core of effective tumor BNCT are 10 B carriers with facile preparation as well as advantageous pharmacokinetic and therapeutic profiles. Herein, the design and preparation of sub-10 nm 10 B-enriched hexagonal boron nitride nanoparticles grafted with poly(glycerol) (h-10 BN-PG), and their application to cancer treatment by BNCT are reported. By virtue of their small particle size and outstanding stealth property, h-10 BN-PG nanoparticles accumulate efficiently in murine CT26 colon tumors with a high intratumor 10 B concentration of 8.8%ID g-1 or 102.1 µg g-1 at 12 h post-injection. Moreover, h-10 BN-PG nanoparticles penetrate into the inside of the tumor parenchyma and then are taken up by the tumor cells. BNCT comprising a single bolus injection of h-10 BN-PG nanoparticles and subsequent one-time neutron irradiation results in significant shrinkage of subcutaneous CT26 tumors. h-10 BN-PG-mediated BNCT not only causes direct DNA damage to the tumor cells, but also triggers pronounced inflammatory immune response in the tumor tissues, which contributes to long-lasting tumor suppression after the neutron irradiation. Thus, the h-10 BN-PG nanoparticles are promising BNCT agents to eradicate tumor through highly efficient 10 B accumulation.


Subject(s)
Boron Neutron Capture Therapy , Nanoparticles , Mice , Animals , Glycerol , Boron Neutron Capture Therapy/methods , Cell Line, Tumor , Nanoparticles/therapeutic use
10.
Phytomedicine ; 112: 154682, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739636

ABSTRACT

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Subject(s)
Carcinoma, Lewis Lung , Ferroptosis , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Carcinoma, Lewis Lung/drug therapy , Endoplasmic Reticulum Stress , Immunotherapy , DNA Damage , Tumor Microenvironment
11.
Int Immunopharmacol ; 115: 109661, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608440

ABSTRACT

Suppression of the immune microenvironment is an important endogenous contributor to treatment failure in lung cancer. Photodynamic therapy (PDT) is widely used in the treatment of malignant tumors owing to its photo-selectivity and minimal side effects. Some studies have shown the ability of photodynamic action not only to cause photo-cytotoxicity to tumor cells but also to induce immunogenic cell death (ICD). However, the mechanism by which PDT enhances tumor immunogenicity is poorly understood. The present study aimed to explore the immunogenicity effect of PDT on lung cancer and to reveal the underlying mechanism. First, we searched for effective conditions for PDT-induced apoptosis in lung cancer cells. Just as expected, chlorin e6 (Ce6) PDT could enhance the immunogenicity of lung cancer cells alongside the induction of apoptosis, characterized by up-regulation of CRT, HSP90, HMGB1 and MHC-I. Further results showed the generation of ROS by Ce6 PDT under the above conditions, which is an oxidative damaging agent. Simultaneously, PDT induced endoplasmic reticulum (ER) stress in cells, as evidenced by enhanced Tht staining and up-regulated CHOP and GRP78 expression. Moreover, PDT led to DNA damage response (DDR) as well. However, the redox inhibitor NAC abolished the ER stress and DDR caused by PDT. More importantly, NAC also attenuated PDT-induced improvement of immunogenicity in lung cancer. On this basis, the PDT-induced CRT up-regulation was found to be attenuated in response to inhibition of ER stress. In addition, PDT-induced increase in HMGB1 and HSP90 release was blocked by inhibition of DDR. In summary, Ce6 PDT could produce ROS under certain conditions, which leads to ER stress that promotes CRT translocation to the cell membrane, and the resulting DNA damage causes the expression and release of nuclear HMGB1 and HSP90, thereby enhancing the immunogenicity of lung cancer. This current study elucidates the mechanism of PDT in ameliorating the immunogenicity of lung cancer, providing a rationale for PDT in regulating the immune microenvironment for the treatment of malignant tumors.


Subject(s)
HMGB1 Protein , Lung Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Reactive Oxygen Species , Immunogenic Cell Death , Lung Neoplasms/drug therapy , Oxidative Stress , Endoplasmic Reticulum Stress , DNA Damage , Oxidation-Reduction , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Tumor Microenvironment
12.
Platelets ; 34(1): 2166677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36719251

ABSTRACT

In our previous study, target drug delivery and treatment of malignant tumors have been achieved by using platelets as carriers loading nano-chemotherapeutic agents (ND-DOX). However, drug release from ND-DOX-loaded platelets is dependent on negative platelet activation by tumor cells, whose activation is not significant enough for the resulting drug release to take an effective anti-tumor effect. Exploring strategies to proactively manipulate the controlled release of drug-laden platelets is imperative. The present study innovatively revealed that photodynamic action can activate platelets in a spatiotemporally controlled manner. Consequently, based on the previous study, platelets were used to load iron oxide-polyglycerol-doxorubicin-chlorin e6 composites (IO-PG-DOX-Ce6), wherein the laser-triggered drug release ability and anti-tumor capability were demonstrated. The findings suggested that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability. Importantly and interestingly, drug-loaded platelets were significantly activated by laser irradiation, characterized by intracellular ROS accumulation and up-regulation of CD62p. Additionally, scanning electron microscopy (SEM) and hydrated particle size results also showed a significant aggregation response of laser irradiated-drug-loaded platelets. Further transmission electron microscopy (TEM) measurements indicated that the activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells. Finally, the co-culture model of drug-loaded platelets and tumor cells proved that laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells. Overall, the present study discovers a drug-loaded platelets delivery using photodynamic effect, enabling laser-controlled intelligent drug delivery and anti-tumor therapy, which provides a novel and feasible approach for clinical application of cytopharmaceuticals.


What is the context?1. Platelets were applied to load IO-PG-DOX-Ce6, wherein the laser-triggered drug release and anti-tumor effect were investigated in vitro.2. The findings indicated that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability, which may attribute to the activation of autophagy in platelets.3. IO-PG-DOX-Ce6-loaded platelets could be significantly activated by laser irradiation (690 nm).4. Activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells5. The co-culture model of drug-loaded platelets and tumor cells proved that the laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells.What is new?1. Platelets could be utilized as the vehicle to load photosensitizer-loaded-nano-drug.2. Photodynamic action can activate platelets in a spatiotemporally controlled manner, which could be a tool to regulate the activation of platelets.3. The laser-triggered activation of drug-loaded platelets allows for target release of cargo.4. The limitation of the current research is that only in vitro experiments were carried out to demonstrate our conclusions.What is impact?The present work provides a novel and feasible approach for the clinical application of cytopharmaceuticals.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Drug Delivery Systems/methods , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Lasers
13.
Biomaterials ; 290: 121833, 2022 11.
Article in English | MEDLINE | ID: mdl-36201945

ABSTRACT

Photodynamic therapy (PDT) has recently emerged as a promising, targeted treatment modality for glioblastoma (GBM) which is the most vicious type of brain tumor. Successful GBM-PDT hinges upon light activation of a photosensitizer accumulated in the tumor. However, inadequate tumor accumulation of photosensitizer severely limits the success of PDT of GBM. To tackle this difficulty, we herein propose a drug delivery strategy of "platelets with photo-controlled release property". This strategy exploits platelets as carriers to deliver a photosensitizer which, in the current study, is a nano-composite (BNPD-Ce6) comprised of chlorine e6 (Ce6) loaded to boron nitride nanoparticles with a surface coating of polyglycerol and doxorubicin. To demonstrate the working mechanism and therapeutic advantage of this strategy, we loaded mouse platelets with BNPD-Ce6 to yield the nano-device BNPD-Ce6@Plt. In vitro experiments showed BNPD-Ce6@Plt to have a high loading capacity and efficiency. Laser irradiation (LI) at a wavelength of 808 nm induced ROS generation in BNPD-Ce6@Plt which displayed rapid activation, aggregation, and speedy discharge of BNPD-Ce6 into co-cultured GL261 mouse GBM cells which in turn, after LI, exhibited marked ROS generation, DNA damage, reduced viability, and cell death. In vivo animal experiments, mice that were intravenously injected with BNPD-Ce6@Plt exhibited rapid and extensive BNPD-Ce6 accumulation in both subcutaneous and intra-brain GL261 tumors shortly after LI of the tumors and the tumors displayed massive tissue necrosis after LI for a second time. Finally, a PDT regimen of two intravenous BNPD-Ce6@Plt injections each followed by multiple times of extracranial LI at the tumor site significantly inhibited the growth of intra-brain GL261 tumors and markedly increased the survival of the host animals. No apparent tissue damage was found in vital organs. Our findings make a compelling case for the notion that platelets are efficient carriers that can photo-controllably deliver nano-photosensitizers to achieve highly targeted and efficacious PDT of GBM. This work presents a novel approach to GBM-PDT with great translational potential.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Photochemotherapy , Porphyrins , Mice , Animals , Glioblastoma/drug therapy , Reactive Oxygen Species/metabolism , Delayed-Action Preparations , Cell Line, Tumor , Porphyrins/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Brain Neoplasms/drug therapy
14.
Front Pharmacol ; 13: 881078, 2022.
Article in English | MEDLINE | ID: mdl-35959429

ABSTRACT

Background: Promoting cholesterol reverse transport (RCT) has been proven to be a promising hyperlipidemia therapy since it is more effective for the treatment of atherosclerosis (AS) caused by hyperlipidemia. Liver X receptor (LXR) agonists can accelerate RCT, but most of them trigger undesirable liver steatosis due to the activation of liver LXRα. Aim: We aim to figure out whether isochlorogenic acid C (ICAC) facilitates RCT without causing hepatic steatosis. Methods: In vitro study, we established foam macrophages and macrophages with loaded NBD-cholesterol models to investigate the competence of RCT promoting ICAC. RT-qPCR and Western blot were used to verify ICAC's regulation of RCT and NF-κB inflammatory pathways. In this in vivo study, male 6-week-old C57BL/6 mice were fed a high-fat diet (HFD) to investigate ICAC's anti-hyperlipidemic effect and its functions in regulating RCT. The anti-hyperlipidemic effect of ICAC was evaluated by blood and liver lipid levels, liver hematoxylin, oil red o staining, and liver coefficient. Finally, mRNA levels of genes involved in RCT and inflammation pathways in the liver and intestine were detected by RT-qPCR. Results: ICAC prevented macrophages from foaming by up-regulating the LXRα mediated RCT pathway and down-regulating expression of the cholesterol absorption genes LDLR and CD36, as well as suppressing iNOS, COX2, and IL-1ß inflammatory factors. In HFD-fed mice, ICAC significantly lowered the lipid level both in the serum and the liver. Mechanistic studies showed that ICAC strengthened the RCT pathway in the liver and intestine but didn't affect liver LXRα. Furthermore, ICAC impeded both adipogenesis and the inflammatory response in the liver. Conclusion: ICAC accelerated RCT without affecting liver LXRα, thus resulting in a lipid-lowering effect without increasing liver adipogenesis. Our results indicated that ICAC could be a new RCT promoter for hyperlipidemia treatment without causing liver steatosis.

15.
Front Aging Neurosci ; 14: 835963, 2022.
Article in English | MEDLINE | ID: mdl-35992589

ABSTRACT

Panic disorder (PD) causes serious functional damage and disability and accelerates the process of individual aging. The pathological basis of PD is the same as that of age-related diseases, which is proposed as a new viewpoint in recent years. Memory decline and social functional impairment are common manifestations of accelerated aging in PD. The function of telomerase reverse transcriptase (TERT) and telomere length (TL) is abnormal in patients with aging and PD. However, the molecular mechanism behind remains unclear. The purpose of this study was to explore the relationship between TERT gene expression (including DNA methylation) and the changes in PD aging characteristics (memory and social function). By TERT gene knockout mice, we found that loss of TERT attenuated the acquisition of recent fear memory during contextual fear conditioning. This study reported that a significantly lower methylation level of human TERT (hTERT) gene was detected in PD patients compared with healthy control and particularly decreased CpG methylation in the promoter region of hTERT was associated with the clinical characteristics in PD. Regional homogeneity (ReHo) analysis showed that the methylation of hTERT (cg1295648) influenced social function of PD patients through moderating the function of the left postcentral gyrus (PCG). This indicates that the hTERT gene may play an important role in the pathological basis of PD aging and may become a biological marker for evaluating PD aging. These findings provide multidimensional evidence for the underlying genetic and pathological mechanisms of PD.

16.
Front Pharmacol ; 13: 949835, 2022.
Article in English | MEDLINE | ID: mdl-36034842

ABSTRACT

Lung cancer recruits tumor-associated macrophages (TAMs) massively, whose predominantly pro-tumor M2 phenotype leads to immunosuppression. Dihydroartemisinin (DHA) has been proven to remodel TAM into an anti-tumor M1 phenotype at certain concentrations in the present study, which was hypothesized to facilitate anti-lung cancer immunotherapy. However, how DHA remodels the TAM phenotype has not yet been uncovered. Our previous work revealed that DHA could trigger ferroptosis in lung cancer cells, which may also be observed in TAM thereupon. Sequentially, in the current study, DHA was found to remodel TAM into the M1 phenotype in vitro and in vivo. Simultaneously, DHA was observed to trigger ferroptosis in TAM and cause the DNA damage response and NF-κB activation. Conversely, the DHA-induced DNA damage response and NF-κB activation in TAM were attenuated after the inhibition of ferroptosis in TAM using an inhibitor of ferroptosis. Importantly, a ferroptosis inhibitor could also abolish the DHA-induced phenotypic remodeling of TAM toward the M1 phenotype. In a nutshell, this work demonstrates that DHA-triggered ferroptosis of TAM results in DNA damage, which could activate downstream NF-κB to remodel TAM into an M1 phenotype, providing a novel strategy for anti-lung cancer immunotherapy. This study offers a novel strategy and theoretical basis for the use of traditional Chinese medicine monomers to regulate the anti-tumor immune response, as well as a new therapeutic target for TAM phenotype remodeling.

17.
Front Psychiatry ; 13: 853613, 2022.
Article in English | MEDLINE | ID: mdl-35686186

ABSTRACT

Objective: This study aimed to test the hypothesis that the relationship between glutamic acid decarboxylase (GAD) 1 gene methylation and severity of clinical symptoms of panic disorder (PD) is mediated by the effect of GAD1 gene methylation on gray matter volume (GMV) and the effect of GMV on PD. Methods: Panic disorder (n = 24) patients were recruited consecutively from the Affiliated Brain Hospital of Nanjing Medical University through outpatient and public advertising, eligible healthy controls (HCs) (n = 22) were recruited from public advertising. We compared GMV and GAD1 gene methylation in PD and HCs to estimate the differences, and on the basis of the relationship between gray matter volumes and GAD1 gene methylation in PD patients was evaluated, the role of GMV as a mediator of GAD1 gene methylation and PD clinical symptoms was analyzed. Results: Panic disorder patients had significantly lower methylation in the GAD1 promoter region on Cytosine-phosphate-guanine (CPG) 7 than HCs (t = 2.380, p = 0.021). Pearson correlation analysis found a significant negative association between cg171674146 (cg12) site and clinical severity (n = 24, r = -0.456, p = 0.025). Compared to HCs, patients with PD had decreased gray matter volumes in several brain regions, which were also associated with PD severity. Left postcentral gyrus (PoCG) GMV mediated the association between cg12 methylation and PD severity, and there was a significant mediation effect of right angular gyrus (ANG) gray matter volumes on the relationship between cg12 methylation and PD severity. Limitation: No direct results can be derived for methylation patterns in different brain regions; the study is cross-sectional; relatively small size.

18.
Front Psychol ; 13: 853804, 2022.
Article in English | MEDLINE | ID: mdl-35592157

ABSTRACT

Background: Cognitive behavioral therapy (CBT) is a first-line psychotherapeutic treatment that has been recommended for psychiatric disorders. Prior neuroimaging studies have provided preliminary evidence suggesting that CBT can have an impact on the activity of brain regions and functional integration between regions. However, the results are far from conclusive. The present article aimed to detect characteristic changes in brain activation following CBT across psychiatric disorders. Method: Web of Science, Cochrane Library, Scopus, and PubMed databases were searched to identify whole-brain functional neuroimaging studies of CBT through 4 August 2021. To be included in the meta-analysis, studies were required to examine functional activation changes between pre-and post-CBT. The included studies were then divided into subgroups according to different task paradigms. Then, an activation likelihood estimation algorithm (ALE) was performed in the different meta-analyses to identify whether brain regions showed consistent effects. Finally, brain regions identified from the meta-analysis were categorized into eight functional networks according to the spatial correlation values between independent components and the template. Results: In total, 13 studies met inclusion criteria. Three different meta-analyses were performed separately for total tasks, emotion tasks, and cognition tasks. In the total task ALE meta-analysis, the left precuneus was found to have decreased activation. For the cognition task ALE meta-analysis, left anterior cingulate (ACC) and left middle frontal gyrus (MFG) were found to have decreased activation following CBT. However, the emotion task ALE meta-analysis did not find any specific brain regions showing consistent effects. A review of included studies revealed default mode network (DMN), executive control network (ECN), and salience network (SN) were the most relevant among the eight functional networks. Conclusion: The results revealed that the altered activation in the prefrontal cortex and precuneus were key regions related to the effects of CBT. Therefore, CBT may modulate the neural circuitry of emotion regulation. This finding provides recommendations for the rapidly developing literature.

19.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568865

ABSTRACT

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Subject(s)
Ferroptosis , Neoplasms , Artemisinins , Cell Line, Tumor , Glutathione , Humans , Hydrogen Peroxide , Iron , Nanomedicine , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Tumor Microenvironment
20.
Front Pharmacol ; 13: 837784, 2022.
Article in English | MEDLINE | ID: mdl-35308251

ABSTRACT

The tumor-associated macrophage (TAM) serves as an immunosuppressive agent in the malignant tumor microenvironment, facilitating the development and metastasis of lung cancer. The photodynamic effect destabilizes cellular homeostasis owing to the generation of reactive oxygen species (ROS), resulting in the enhanced pro-inflammatory function of immunocytes. In our previous study, the Ce6-mediated photodynamic effect was found to have kept the viability of macrophages and to remodel them into the M1 phenotype. However, the mechanism remains unrevealed. The present study now explores the mechanism of photodynamic therapy (PDT)-mediated reprogramming of macrophages. As expected, Ce6-mediated PDT was capable of generating reactive oxygen species, which was continuously degraded, causing "low intensity" damage to DNA and thereby triggering subsequent DNA damage response in macrophages. The autophagy was thus observed in Ce6-treated macrophages and was shown to protect cells from being photodynamically apoptotic. More importantly, Ce6 PDT could activate the stimulator of interferon genes (STING) molecule, a sensor of DNA damage, which could activate the downstream nuclear factor kappa-B (NF-κB) upon activation, mediating the polarization of macrophages towards the M1 phenotype thereupon. In addition, inhibition of ROS induced by PDT attenuated the DNA damage, STING activation, and M1-phenotype reprogramming. Furthermore, the silence of the STING weakened Ce6 treatment-mediated M1 remodeling of macrophages as well. Altogether, these findings indicate the Ce6-induced photodynamic effect polarizes macrophages into an M1 phenotype through oxidative DNA damage and subsequent activation of the STING. This work reveals the crucial mechanism by which photodynamic therapy regulates the macrophage phenotype and also provides a novel intervenable signaling target for remodeling macrophages into the M1 phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...