Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402314, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708815

ABSTRACT

Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.

2.
Angew Chem Int Ed Engl ; 62(6): e202217864, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36479801

ABSTRACT

In contrast to the vast Al-oxo molecular cluster chemistry, Al-based building units for metal-organic framework (MOF) construction are limited in structural diversity and complexity. Synthesis of single crystalline MOFs based on this "hard" metal is further complicated by the poor reversibility of the Al-organic coordination linkages. Here, a strategy to employ two kinds of linkages with distinct strength-strong Al-carboxylate linkage and weak Cu-pyrazol N linkage-gives FDM-91 (FDM=Fudan Materials) with gigantic Al24 -based units. After replacing the weak moieties with organic linkers post-synthetically, two new stable MOFs with exceptional water harvesting capacity (up to 0.53 g g-1 ) and outstanding cycling performance are developed. Linkage-selective dissociation of FDM-91 further leads to the isolation of the Al24 molecular clusters. The versatile chemistry performed here to reinforce or deconstruct MOFs provides a new way to make important extended and discrete structures.

3.
Nat Commun ; 12(1): 5077, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34426571

ABSTRACT

In principle, polymerization tends to produce amorphous or poorly crystalline materials. Efficiently producing high-quality single crystals by polymerization in solvent remains as an unsolved issue in chemistry, especially for covalent organic frameworks (COFs) with highly complex structures. To produce µm-sized single crystals, the growth time is prolonged to >15 days, far away from the requirements in practical applications. Here, we find supercritical CO2 (sc-CO2) accelerates single-crystal polymerization by 10,000,000 folds, and produces two-dimensional (2D) COF single crystals with size up to 0.2 mm within 2~5 min. Although it is the fastest single-crystal polymerization, the growth in sc-CO2 leads to not only the largest crystal size of 2D COFs, but also higher quality with improved photoconductivity performance. This work overcomes traditional concept on low efficiency of single-crystal polymerization, and holds great promise for future applications owing to its efficiency, industrial compatibility, environmental friendliness and universality for different crystalline structures and linkage bonds.

4.
ACS Sens ; 6(7): 2613-2621, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34250792

ABSTRACT

Trimethylamine (TMA) sensors based on metal oxide semiconductors (MOS) have drawn great attention for real-time seafood quality evaluation. However, poor selectivity and baseline drift limit the practical applications of MOS TMA sensors. Engineering core@shell heterojunction structures with accumulation and depletion layers formed at the interface is regarded as an appealing way for enhanced gas sensing performances. Herein, we design porous hollow Co3O4@ZnO cages via a facile ZIF-67@ZIF-8-derived approach for TMA sensors. These sensors demonstrate great TMA resistive sensing performance (linear response at moderate TMA concentrations (<33 ppm)), and a high sensitivity of ∼41 is observed when exposed to 33 ppm TMA, with a response/recovery time of only 3/2 s. This superior performance benefits from the Co3O4@ZnO porous hollow structure with maximum heterojunctions and high surface area. Furthermore, great capacitive TMA sensing with linear sensitivity over the full testing concentration range (0.33-66 ppm) and better baseline stability were investigated. A possible capacitive sensing mechanism of TMA polarization was proposed. For practical usage, a portable sensing prototype based on the Co3O4@ZnO sensor was fabricated, and its satisfactory sensing behavior further confirms the potential for real-time TMA detection.


Subject(s)
Micro-Electrical-Mechanical Systems , Zinc Oxide , Methylamines , Oxides , Porosity
5.
J Colloid Interface Sci ; 552: 372-377, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31136855

ABSTRACT

Interfaces between the pores and the skeletons in metal-organic frameworks (MOFs) define the places where the materials interact with the incoming guests, and constructing functionalized interfaces in MOFs is crucial for various applications. In this report, by using the platform of the well-known terbium-based 12-connected building units, four isoreticular MOFs, FDM-34-37, with fcu-a topology in single crystal form were obtained with linear organic linkers featuring diversified edge lengths (from 17.4 to 23.8 Å) and functionalities (naphthalene, bipyridine, stilbene, and rotatable triphenyl rings). With the surface areas of up to 1850 m2 g-1, these MOFs feature distinct pores with fine-tuned sizes. Furthermore, the relationship between the luminescence originated from the terbium, and the energy transfer between the metals and the linkers on the interfaces were carefully investigated. With characteristic luminescence and potentially active sites from both the metals and the linkers, these MOFs show prospects in various applications.

6.
J Am Chem Soc ; 141(6): 2348-2355, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30636404

ABSTRACT

Encapsulation of biomacromolecules in metal-organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here, we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.


Subject(s)
Enzymes, Immobilized/chemistry , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks/chemistry , Capsules , Catalase/chemistry , Catalase/metabolism , Enzymes, Immobilized/metabolism , Models, Molecular , Protein Conformation , Protein Denaturation , Temperature , Urease/chemistry , Urease/metabolism
7.
J Am Chem Soc ; 139(23): 7998-8007, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28541696

ABSTRACT

Inorganic functionalization of metal-organic frameworks (MOFs), such as incorporation of multiple inorganic building blocks with distinct metals into one structure and further modulation of the metal charges, endows the porous materials with significant properties toward their applications in catalysis. In this work, by an exploration of the role of 4-pyrazolecarboxylic acid (H2PyC) in the formation of trinuclear copper pyrazolate as a metalloligand in situ, four new MOFs with multiple components in order were constructed through one-pot synthesis. This metalloligand strategy provides multicomponent MOFs with new topologies (tub for FDM-4 and tap for FDM-5) and is also compatible with a second organic linker for cooperative construction of complex MOFs (1,4-benzenedicarboxylic acid for FDM-6 and 2,6-naphthalenedicarboxylic acid for FDM-7). The component multiplicity of these MOFs originates from PyC's ability to separate Cu and Zn on the basis of their differentiated binding affinities toward pyrazolate and carboxylate. These MOFs feature reversible and facile redox transformations between CuI3(PyC)3 and CuII3(µ-OH)(PyC)3(OH)3 without altering the connecting geometries of the units, thus further contributing to the significant catalytic activities in the oxidation of CO and aromatic alcohols and the decomposition of H2O2. This study on programming multiple inorganic components into one framework and modulating their electronic structures is an example of functionalizing the inorganic units of MOFs with a high degree of control.

SELECTION OF CITATIONS
SEARCH DETAIL
...