Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.570
Filter
1.
Article in English | MEDLINE | ID: mdl-38822760

ABSTRACT

OBJECTIVE: Recognition of auditory brainstem response (ABR) waveforms may be challenging, particularly for older individuals or those with hearing loss. This study aimed to investigate deep learning frameworks to improve the automatic recognition of ABR waveforms in participants with varying ages and hearing levels. STUDY DESIGN: The research used a descriptive study design to collect and analyze pure tone audiometry and ABR data from 100 participants. SETTING: The research was conducted at a tertiary academic medical center, specifically at the Clinical Audiology Center of Tsinghua Chang Gung Hospital (Beijing, China). METHODS: Data from 100 participants were collected and categorized into four groups based on age and hearing level. Features from both time-domain and frequency-domain ABR signals were extracted and combined with demographic factors, such as age, sex, pure-tone thresholds, stimulus intensity, and original signal sequences to generate feature vectors. An enhanced Wide&Deep model was utilized, incorporating the Light-multi-layer perceptron (MLP) model to train the recognition of ABR waveforms. The recognition accuracy (ACC) of each model was calculated for the overall data set and each group. RESULTS: The ACC rates of the Light-MLP model were 97.8%, 97.2%, 93.8%, and 92.0% for Groups 1 to 4, respectively, with a weighted average ACC rate of 95.4%. For the Wide&Deep model, the ACC rates were 93.4%, 90.8%, 92.0%, and 88.3% for Groups 1 to 4, respectively, with a weighted average ACC rate of 91.0%. CONCLUSION: Both the Light-MLP model and the Wide&Deep model demonstrated excellent ACC in automatic recognition of ABR waveforms across participants with diverse ages and hearing levels. While the Wide&Deep model's performance was slightly poorer than that of the Light-MLP model, particularly due to the limited sample size, it is anticipated that with an expanded data set, the performance of Wide&Deep model may be further improved.

2.
medRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826433

ABSTRACT

Background: Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods: Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results: Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions: TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.

3.
Infect Drug Resist ; 17: 2189-2198, 2024.
Article in English | MEDLINE | ID: mdl-38835493

ABSTRACT

Objective: In this paper, we analyzed the clinical data of patients with meningoencephalitis caused by Streptococcus intermedius to understand better the clinical characteristics of the disease and recommend auxiliary diagnostic mode as well as treatment experience. Methods: We reviewed the clinical data of two patients admitted to our department in 2019 with meningoencephalitis caused by S. intermedius. Results: Two female patients were examined, one of whom had a history of radiotherapy for nasopharyngeal carcinoma while the other had no underlying disease. These two patients were admitted with symptoms of meningoencephalitis. Cerebrospinal fluid examinations revealed elevated levels of leukocytes and protein. After treatment with meropenem, the condition improved for a brief time, but then worsened with a decline in mental status and limb movement. Blood and cerebrospinal fluid cultures demonstrated the absence of pathogenic bacteria, while genome sequencing of cerebrospinal fluids revealed the presence of S. intermedius. Cranial magnetic resonance imaging revealed multiple cerebral abscesses (CAs). After coadministration of linezolid as an anti-infective, clinical symptoms gradually improved, and the CAs shrank on follow-up imaging. The condition exhibited a pattern of improvement-deterioration-improvement. Conclusion: Meningoencephalitis caused by S. intermedius is complex and prone to fluctuation and formation of multiple CAs. The definitive clinical diagnosis of this disease can be aided by genome sequencing technology, and early clarification of the etiology combined with the use of potent antibiotics is effective.

4.
Article in English | MEDLINE | ID: mdl-38777120

ABSTRACT

BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) is characterized by enhanced Th2 inflammatory response. Fractional exhaled nitric oxide (FeNO) measurement has been utilized as a valuable tool in predicting the development and management of asthma, another typical Th2 inflammation. However, the clinical significance of FeNO in ABPA remains unclear. OBJECTIVE: To investigate the association between FeNO and the prognosis of ABPA patients, so as to provide a basis for the use of FeNO in evaluating the efficacy of glucocorticoids in ABPA treatment. METHODS: This study consists of two parts. 58 patients were enrolled in the retrospective study. Clinical indexes between patients with different prognoses were compared and ROC curve analysis were employed to determine the threshold value. The prospective observational study involved 61 patients who were regularly followed up at 4-6 weeks and 6 months since the initial treatment. Patients were grouped based on baseline FeNO values, correlation analysis were performed between clinical data. RESULTS: Different prognoses were observed between patients with High- and Low- baseline FeNO values, with a threshold value of 57 ppb. The percentage of A. fumigatus-specific IgE, percentage of positive A. fumigatus-specific IgG, and relapse/exacerbation rate differed significantly between the H/L-FeNO groups. Patients with higher FeNO needed longer treatment duration and showed shorter interval between glucocorticoid withdrawal and the next relapse/exacerbation. CONCLUSION: Our findings indicate that the level of FeNO is associated with the prognosis of ABPA. It can serve as an independent and valuable biomarker for evaluating the effectiveness of glucocorticoid treatment.

5.
Hum Reprod Open ; 2024(2): hoae023, 2024.
Article in English | MEDLINE | ID: mdl-38764910

ABSTRACT

STUDY QUESTION: Is there an association between morphokinetic variables of meiotic maturation and the severity of aneuploidy following in vitro maturation (IVM) in the mouse? SUMMARY ANSWER: The severity of meiotic aneuploidy correlates with an extended time to first polar body extrusion (tPB1) and duration of meiosis I (dMI). WHAT IS KNOWN ALREADY: Morphokinetic variables measured using time-lapse technology allow for the non-invasive evaluation of preimplantation embryo development within clinical assisted reproductive technology (ART). We recently applied this technology to monitor meiotic progression during IVM of mouse gametes. Whether there is a relationship between morphokinetic variables of meiotic progression and aneuploidy in the resulting egg has not been systematically examined at the resolution of specific chromosomes. Next-generation sequencing (NGS) is a robust clinical tool for determining aneuploidy status and has been reverse-translated in mouse blastocysts and oocytes. Therefore, we harnessed the technologies of time-lapse imaging and NGS to determine the relationship between the morphokinetics of meiotic progression and egg aneuploidy. STUDY DESIGN SIZE DURATION: Cumulus-oocyte complexes were collected from large antral follicles from hyperstimulated CD-1 mice. Cumulus cells were removed, and spontaneous IVM was performed in the absence or presence of two doses of Nocodazole (25 or 50 nM) to induce a spectrum of spindle abnormalities and chromosome segregation errors during oocyte meiosis. Comprehensive chromosome screening was then performed in the resulting eggs, and morphokinetic variables and ploidy status were compared across experimental groups (control, n = 11; 25 nM Nocodazole, n = 13; 50 nM Nocodazole, n = 23). PARTICIPANTS/MATERIALS SETTING METHODS: We monitored IVM in mouse oocytes using time-lapse microscopy for 16 h, and time to germinal vesicle breakdown (tGVBD), tPB1, and dMI were analyzed. Following IVM, comprehensive chromosome screening was performed on the eggs and their matched first polar bodies via adaptation of an NGS-based preimplantation genetic testing for aneuploidy (PGT-A) assay. Bioinformatics analysis was performed to align reads to the mouse genome and determine copy number-based predictions of aneuploidy. The concordance of each polar body-egg pair (reciprocal errors) was used to validate the results. Ploidy status was categorized as euploid, 1-3 chromosomal segregation errors, or ≥4 chromosomal segregation errors. Additionally, aneuploidy due to premature separation of sister chromatids (PSSC) versus non-disjunction (NDJ) was distinguished. MAIN RESULTS AND THE ROLE OF CHANCE: We applied and validated state-of-the-art NGS technology to screen aneuploidy in individual mouse eggs and matched polar bodies at the chromosome-specific level. By performing IVM in the presence of different doses of Nocodazole, we induced a range of aneuploidy. No aneuploidy was observed in the absence of Nocodazole (0/11), whereas IVM in the presence of 25 and 50 nM Nocodazole resulted in an aneuploidy incidence of 7.69% (1/13) and 82.61% (19/23), respectively. Of the aneuploid eggs, 5% (1/20) was due to PSSC, 65% (13/20) to NDJ, and the remainder to a combination of both. There was no relationship between ploidy status and tGVBD, but tPB1 and the dMI were both significantly prolonged in eggs with reciprocal aneuploidy events compared to the euploid eggs, and this scaled with the severity of aneuploidy. Eggs with ≥4 aneuploid chromosomes had the longest tPB1 and dMI (P < 0.0001), whereas eggs with one to three aneuploid chromosomes exhibited intermediate lengths of time (P < 0.0001). LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: We used Nocodazole in this study to disrupt the meiotic spindle and induce aneuploidy in mouse oocytes. Whether the association between morphokinetic variables of meiotic progression and the severity of aneuploidy occurs with other compounds that induce chromosome segregation errors remain to be investigated. In addition, unlike mouse oocytes, human IVM requires the presence of cumulus cells, which precludes visualization of morphokinetic variables of meiotic progression. Thus, our study may have limited direct clinical translatability. WIDER IMPLICATIONS OF THE FINDINGS: We validated NGS in mouse eggs to detect aneuploidy at a chromosome-specific resolution which greatly improves the utility of the mouse model. With a tractable and validated model system for characterizing meiotic aneuploidy, investigations into the molecular mechanisms and factors which may influence aneuploidy can be further elaborated. Time-lapse analyses of morphokinetic variables of meiotic progression may be a useful non-invasive predictor of aneuploidy severity. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the Bill & Melinda Gates Foundation (INV-003385). Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission. The authors have no conflict of interest to disclose.

6.
Oncol Lett ; 28(1): 311, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38784604

ABSTRACT

[This retracts the article DOI: 10.3892/ol.2022.13268.].

7.
Water Res ; 258: 121753, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38754298

ABSTRACT

Seawater utilization is crucial for the sustainable human development. Despite growing interest in forward osmosis (FO) due to its unique properties, conventional FO membranes with salt-water selectivity have limitations in applying to specific salt-salt separation processes, which hinders their application in resource utilization. In this work, a new concept, "selective forward osmosis (SFO)", was proposed, which ingeniously employed an SFO membrane consisting of an ion-selective layer on a denser substrate. The denser substrate is designed to control water flux so as to alleviate the solution dilution and improve the salt-salt separation. Moreover, the sucrose and pure water were used separately as feed solution to provide different water flux to influence the various salt fluxes, showing that pure water feed could enhance the salt-salt separation efficiency, although it could dilute the draw solution to some extent. Therefore, pure water was selected as feed in the subsequent experiments. The optimized SFO membrane achieved high Na2SO4/NaCl selectivity (∼54.8) and MgCl2/NaCl selectivity (∼9.2) in single-salt draw solutions. With mixed-salt and heavy-metal-mixed-salt draw solutions, the Mg2+/Na+ selectivity was enhanced to ∼14.5, and further to 29.3. In real seawater tests, the SFO system effectively permeated monovalent elements (such as Na flux of ∼68.6 g m-2 h-1) while maintaining a higher rejection for bivalent elements (such as Mg flux of ∼0.08 g m-2 h-1), showing high selectivities for Mg/Na, U/Na, Sr/Na, Ni/Na, and Ca/Na. These results demonstrate the potential of SFO for resource utilization, especially in complex saline environments. This work contributes a new route for salt-salt separation in the pretreatment of seawater resources.

8.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38812381

ABSTRACT

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Subject(s)
Auditory Cortex , Electroencephalography , Evoked Potentials, Auditory , Magnetoencephalography , Humans , Magnetoencephalography/instrumentation , Evoked Potentials, Auditory/physiology , Auditory Cortex/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , Adult , Male
9.
J Econ Entomol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706118

ABSTRACT

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.

10.
Small Methods ; : e2400256, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708816

ABSTRACT

Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.

11.
Appl Environ Microbiol ; : e0143623, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709097

ABSTRACT

Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.

12.
Cancer Sci ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695305

ABSTRACT

Hepatocellular carcinoma (HCC), the most prevalent malignancy of the digestive tract, is characterized by a high mortality rate and poor prognosis, primarily due to its initial diagnosis at an advanced stage that precludes any surgical intervention. Recent advancements in systemic therapies have significantly improved oncological outcomes for intermediate and advanced-stage HCC, and the combination of locoregional and systemic therapies further facilitates tumor downstaging and increases the likelihood of surgical resectability for initially unresectable cases following conversion therapies. This shift toward high conversion rates with novel, multimodal treatment approaches has become a principal pathway for prolonged survival in patients with advanced HCC. However, the field of conversion therapy for HCC is marked by controversies, including the selection of potential surgical candidates, formulation of conversion therapy regimens, determination of optimal surgical timing, and application of adjuvant therapy post-surgery. Addressing these challenges and refining clinical protocols and research in HCC conversion therapy is essential for setting the groundwork for future advancements in treatment strategies and clinical research. This narrative review comprehensively summarizes the current strategies and clinical experiences in conversion therapy for advanced-stage HCC, emphasizing the unresolved issues and the path forward in the context of precision medicine. This work not only provides a comprehensive overview of the evolving landscape of treatment modalities for conversion therapy but also paves the way for future studies and innovations in this field.

13.
Heliyon ; 10(9): e30310, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38742080

ABSTRACT

Background: Methods for washed microbiota transplantation (WMT) through the mid-gut include transendoscopic enteral tubing (TET) and manual spiral nasojejunal tube (SNT) placement have not been studied. Methods: This prospective interventional study was performed at a single centre. Patients were divided into the SNT and mid-gut TET groups based on their conditions and wishes. In the SNT group, an SNT was passively inserted into the stomach, and abdominal X-rays were taken within 24 h to confirm tube placement in the small intestine. In the mid-gut TET group, mid-gut TET was placed in the small intestine for gastroscopy. Data on the clinical efficacy of WMT, intubation time, cost, overall comfort score, adverse reactions, etc., were collected from the two groups. Results: Sixty-three patients were included in the study (SNT group (n = 40) and mid-gut TET group (n = 23)). The clinical efficacy of WMT in the SNT and mid-gut TET groups was 90 % and 95.7 %, respectively (P = 0.644). Compared with the mid-gut TET group, the SNT group showed a shorter operation time (120 s vs. 258 s, P = 0.001) and a lower average cost (641.7 yuan vs. 1702.1 yuan, P = 0.001). There was no significant difference in the overall comfort score or the incidence of common discomfort symptoms between the two groups. Conclusion: The different implantation methods have different advantages; compared with mid-gut TET placement, manual SNT placement provides some benefits.

14.
Biomacromolecules ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743836

ABSTRACT

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.

15.
Foods ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731763

ABSTRACT

Ratoon rice, the cultivation of a second crop from the stubble after the main harvest, is recognized as an eco-friendly and resource-saving method for rice production. Here, a field experiment was carried out in the Yangtze River region to investigate the impact of varying stubble heights on the grain quality of ratoon rice, as well as to compare the grain quality between the main and ratoon season. This study, which focused on 12 commonly cultivated rice varieties, conducted a comprehensive analysis assessing milling characteristics, appearance, and cooking quality. The results show that ratoon rice crops exhibited a higher milled rice rate and head rice rate compared to the main rice crops. Conversely, chalky rice percentage, chalkiness degree, and amylose content were lower in ratoon rice crops. Principal component analysis grouped eight relevant quality indicators of rice quality which were concentrated into three categories, with amylose content identified as the key indicator of rice quality for distinguishing between different stubble heights. Random forest results reveal a robust and significant correlation between appearance quality index and amylose content. Subordinate function analysis indicated that a stubble height of 30 cm resulted in optimal rice quality, with Lingliangyou 211 exhibiting the highest quality and Xiangzao Xian 32 the lowest. Overall, our study suggests that ratoon rice crops generally outperform main rice crops in terms of quality, with the optimal measurement at a stubble height of 30 cm. This study holds substantial importance for selecting appropriate stubble heights for ratoon rice crops and enhancing overall rice quality.

16.
J Youth Adolesc ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755431

ABSTRACT

Academic engagement is vital for college students, yet existing studies reveal inconsistencies in how gender influences academic engagement. Building upon the statistical discrimination theory and identity-based motivation theory, this study develops an integrated model to examine gender differences in college students' academic engagement. Further, the role that gender-role orientation in influencing academic engagement was investigated. Using a sample of 524 college students (Mage = 21.11, SD = 1.98; 47.7% women) from a large university collected in two time periods, the findings indicate that in the Chinese context, women anticipate higher future sex discrimination than men. However, gender-role orientation restores parity between men and women through a moderated mediation: egalitarian gender-role orientation has a stronger effect on women's anticipated future sex discrimination than on men's, resulting in increased academic engagement of women. The findings highlight the need to consider female students' egalitarian beliefs in gender-related academic research.

17.
Front Oncol ; 14: 1401839, 2024.
Article in English | MEDLINE | ID: mdl-38800396

ABSTRACT

Background: Desmoid tumor (DT) is a rare locally aggressive but non-metastatic mesenchymal soft tissue neoplasm that predominantly occurs in the abdominal wall, abdominal cavity, and extremities. Its occurrence in the mesentery is relatively uncommon. Case reports: This article reports two cases of desmoid tumor treated at the Department of Gastrointestinal Surgery, Weifang People's Hospital. The first case was a 59-year-old male patient who had previously undergone surgery for esophagogastric junction cancer. Postoperatively, he developed an intra-abdominal mass that rapidly increased in size within three months. The second case was a 60-year-old male patient who incidentally discovered a mass in the left lower abdomen. Both patients underwent surgical treatment, and the postoperative pathological diagnosis was mesenteric desmoid tumor. Conclusion: The treatment of desmoid tumor remains challenging. Simple surgical resection often yields unsatisfactory outcomes, and the efficacy of adjuvant radiotherapy and chemotherapy is also limited. Further research and clinical practice are necessary to improve diagnostic and therapeutic strategies, aiming to enhance patient survival and quality of life.

18.
Nat Mater ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769206

ABSTRACT

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

19.
Phytochemistry ; 223: 114131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705264

ABSTRACT

Four undescribed homoisoflavanoids (1-4), one homoflavonoid (5), ten dibenzoxocin derivatives (6a-10a and 6b-10b), one dibenzoxocin-derived phenolic compound (11), one diterpenoid (13), three aliphatic dicarboxylic acid derivatives (14-16), together with the known diterpenoid 12-O-ethylneocaesalpin B (12) were obtained from the branches and leaves of Hultholia mimosoides. Their structures were elucidated by extensive spectroscopic techniques. Notably, each of the dibenzoxocins 6-10 existed as a pair of interconvertible atropisomers and the conformation for these compounds was clarified by NMR and ECD analyses. Protosappanin F (11) was a previously undescribed dibenzoxocin-derived compound in which one of the benzene rings was hydrogenated to a polyoxygenated cyclohexane ring and an ether linkage was established between C-6 and C-12a. The isolated polyphenols were tested for induction of quinone reductase and compounds 3 and 8 showed potent QR-inducing activity in Hepa-1c1c7 cells.


Subject(s)
Antioxidants , Plant Leaves , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Molecular Structure , Salicaceae/chemistry , Plant Stems/chemistry
20.
J Colloid Interface Sci ; 669: 877-885, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749226

ABSTRACT

Recently, due to high price, resource shortage and unstable supply of cobalt, the development of low-cost cobalt-free Ni-rich cathodes has attracted extensive attention with the ever-increasing lithium-ion batteries (LIBs) industry. Selecting cost-effective elements to replace cobalt in Ni-rich cathodes is urgent. However, the principle of structural design of Ni-rich cathode remains unclear, hampering the selection of alternative elements. Herein, the cobalt-free cathodes of LiNi0.95Mg0.05O2 (NiMg) and LiNi0.95Mn0.05O2 (NiMn) are designed as alternatives to LiNi0.96Co0.04O2 (NiCo). NiMg has comparable cycle stability with NiCo, while NiMn has inferior cycle performance. Reverse Monte Carlo modelling was used to generate structural model and uncover local structure by fitting pair distribution function. It reveals Mn causes more severe Jahn-Teller distortions and disordered lattice host framework (Ni0.95M0.05O2, M = Co/Mn/Mg) than Co and Mg due to the strong size effect and coulomb interactions of Mn in Ni0.95Mn0.05O2 layer. The outstanding cycle stability of NiMg and NiCo originates from the ordered lattice host frameworks, which relieve stress and inhibit particle breakage during cycle. Meanwhile, the ordered lattice host framework induced guest Li+ disordering reduces Li+ diffusion energy barrier, improving the rate capability. This study provides a new perspective for the structural design of cobalt-free Ni-rich cathodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...