Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 256: 117493, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483022

ABSTRACT

In this paper, we have isolated cellulose nanocrystallines (CNCs) with different morphologies by enzymatic hydrolysis, and prepared flexible and transparent nanocomposite films with PVA matrix via solution casting. By means of SEM, UV-vis, XRD, DTG, FT-IR and mechanical methods, the effects of rod-shaped cellulose nanocrystallines (RCNCs) and spherical cellulose nanocrystallines (SCNCs) on PVA nanocomposite films were compared systematically. The results showed CNCs with different morphologies had little effect on the transparency of the composite films, and the crystallinity fluctuated with the change of CNCs additive amount. Compared with the RCNCs, SCNCs had a better improve ability to the thermal stability of the composite films by promoting pyrolysis temperature 60-80 °C. On the contrary, the maximum mechanical properties of the composite films of RCNCs were much higher than those of SCNCs, and the Young's modulus of the PVA/RCNCs composite film were increased by 120.97 % in comparison with the pure PVA.


Subject(s)
Cellulose/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Crystallization , Elastic Modulus , Enzymes/chemistry , Hydrolysis , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Temperature , Tensile Strength , X-Ray Diffraction
2.
Nucleic Acids Res ; 49(D1): D1268-D1275, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270889

ABSTRACT

DNA methylation is an important epigenetic regulator in gene expression and has several roles in cancer and disease progression. MethHC version 2.0 (MethHC 2.0) is an integrated and web-based resource focusing on the aberrant methylomes of human diseases, specifically cancer. This paper presents an updated implementation of MethHC 2.0 by incorporating additional DNA methylomes and transcriptomes from several public repositories, including 33 human cancers, over 50 118 microarray and RNA sequencing data from TCGA and GEO, and accumulating up to 3586 manually curated data from >7000 collected published literature with experimental evidence. MethHC 2.0 has also been equipped with enhanced data annotation functionality and a user-friendly web interface for data presentation, search, and visualization. Provided features include clinical-pathological data, mutation and copy number variation, multiplicity of information (gene regions, enhancer regions, and CGI regions), and circulating tumor DNA methylation profiles, available for research such as biomarker panel design, cancer comparison, diagnosis, prognosis, therapy study and identifying potential epigenetic biomarkers. MethHC 2.0 is now available at http://awi.cuhk.edu.cn/∼MethHC.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Databases, Genetic , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Biomarkers, Tumor/metabolism , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , DNA Copy Number Variations , Disease Progression , Enhancer Elements, Genetic , High-Throughput Nucleotide Sequencing , Humans , Internet , Microarray Analysis , Molecular Sequence Annotation , Mutation , Neoplasms/classification , Neoplasms/diagnosis , Neoplasms/metabolism , Software , Transcriptome
3.
Nucleic Acids Res ; 48(D1): D148-D154, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31647101

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18-25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated miRNA-target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated miRNA-target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.


Subject(s)
Databases, Nucleic Acid , MicroRNAs/metabolism , Circulating MicroRNA/metabolism , Data Mining , Gene Expression Regulation , RNA, Messenger/metabolism , User-Computer Interface
4.
Bioresour Technol ; 291: 121842, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31377505

ABSTRACT

The spherical cellulose nanocrystals (CNCs) with high purity were prepared, the processes included composite enzymolysis of pulp fibers and the purification of product. The impurities in the crude product CNCs were analyzed with FTIR, coomassie brilliant blue-G250 and ionic chromatography. The pure CNCs were characterized with SEM, XRD, DLS and TGA. The results indicated that the crude CNCs was flocculated and washed twice with a dilute acid solution (pH = 2) to get pure spherical CNCs, the purity was approximate 99.99%. The obtained pure spherical CNCs had a narrow particle size distribution with diameter 15-40 nm. FTIR and XRD analyses proved that the crystal phase of the spherical CNCs did not change, but the crystallinity decreased slightly compared with pulp fibers. The thermal degradation showed that the spherical CNCs had better thermal stability than one from other methods, and the temperature of maximum weight loss rate (Tmax) was 329.2 °C.


Subject(s)
Cellulose/chemistry , Nanoparticles/chemistry , Hot Temperature , Paper , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...