Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Announc ; 6(20)2018 May 17.
Article in English | MEDLINE | ID: mdl-29773621

ABSTRACT

The self-flocculation of yeast cells presents advantages for continuous ethanol fermentation such as their self-immobilization within fermenters for high density to improve ethanol productivity and cost-effective biomass recovery by gravity sedimentation. We sequenced and analyzed the genome of the self-flocculating Saccharomyces cerevisiae SPSC01 for the industrial production of fuel ethanol.

2.
Protein Pept Lett ; 25(2): 202-207, 2018.
Article in English | MEDLINE | ID: mdl-29359658

ABSTRACT

BACKGROUND: The major carbohydrate components of lignocellulosic biomass are cellulose and hemicelluloses. Saccharomyces cerevisiae cannot efficiently utilize xylose derived upon the hydrolysis of hemicelluloses. Although engineering the yeast with xylose metabolic pathway has been intensively studied, challenges are still ahead for developing robust strains for lignocellulosic bioethanol production. OBJECTIVE: The main objective of this study was to reveal the role of the MIG1 mutant isolated from the self-flocculating S. cerevisiae SPSC01 in xylose utilization, glucose repression and ethanol fermentation by S. cerevisiae. METHODS: The MIG1 mutant was amplified from S. cerevisiae SPSC01 by PCR and MIG1- overexpression-cassette was transformed into S. cerevisiae S288c and xylose-metabolizing strain YB-2625-T through homologous recombination. Yeast growth was measured by colony assay on plates with or without xylose supplementation. Then xylose utilization and ethanol production were further evaluated through flask fermentation when mixed sugars of glucose and xylose at 3:1 and 2:1, respectively, were supplied. Fermentation products were detected by HPLC, and activities of xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) were also measured. The transcription of genes regulated by the expression of the MIG1 mutant was analyzed by RTqPCR. Evolutionary relationship of various MIG1s was developed by gene sequencing and sequence alignment. RESULTS: No difference was observed for S288c growing with xylose when it was engineered with the overexpression or deletion of its native MIG1, but its growth was enhanced when overexpressing the MIG1 mutant from SPSC01. The submerged culture of YB-2625-T MIG1-SPSC engineered with xylose-metabolic pathway and the MIG1 mutant indicated that xylitol accumulation was decreased, and consequently, more biomass was accumulated. Furthermore, improved activities of the key enzymes such as XR, XDH and XK were detected in YB-2625-T MIG1-SPSC. Evolutionary analysis of MIG1s amplified from S. cerevisiae strains commonly used for ethanol production revealed a close relationship of SPSC01 and YB-2625. CONCLUSION: Our results demonstrated the effect of the overexpression of the MIG1 mutant from SPSC01 on xylose utilization of S. cerevisiae. This study could be an alternative strategy for engineering S. cerevisiae with improved xylose utilization.


Subject(s)
Ethanol/chemistry , Fungal Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Aldehyde Reductase/metabolism , D-Xylulose Reductase/metabolism , Fermentation , Fungal Proteins/genetics , Glucose/chemistry , Glucose/metabolism , Metabolic Networks and Pathways , Mutation , Xylitol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...