Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 4(3): 1629-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22332837

ABSTRACT

Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam.


Subject(s)
Flame Retardants/analysis , Glutens/chemistry , Thermal Conductivity , Triticum/chemistry , Calorimetry , Diffusion , Gases , Glutens/ultrastructure , Materials Testing , Temperature , Thermogravimetry , Triticum/ultrastructure
2.
J Comput Chem ; 29(13): 2134-43, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18432619

ABSTRACT

The emerging families of advanced thermoelectrics are dominated by antimonides and tellurides. Because the structures of the tellurides are mostly composed of NaCl-related motifs, they do not contain any Te-Te bonds, and all of the antimonide structures exhibit Sb-Sb bonds of various lengths. Taking all Sb-Sb distances shorter than 3.2 A into account, the Sb atom substructures are Sb(2) (4-) pairs in beta-Zn(4)Sb(3), linear Sb(3) (7-) units in Yb(14)MnSb(11), planar Sb(4) (4-) rectangles in the skutterudites, for example, LaFe(3)CoSb(12), and Sb(8) cubes interconnected via short Sb-Sb bonds to a three-dimensional network in Mo(3)Sb(5)Te(2). These interactions have a significant impact on the band gap size as well as on the effective mass around the Fermi level, for the bottom of the conduction band is in all cases predominated by antibonding Sb-Sb interactions, and-in some cases-the top of the valence band by bonding Sb-Sb interactions.

3.
Inorg Chem ; 46(23): 9906-11, 2007 Nov 12.
Article in English | MEDLINE | ID: mdl-17915860

ABSTRACT

The title compounds were prepared from the elements in evacuated silica tubes at 650 degrees C, followed by slow cooling. Ba2Ag4Se5 forms a new structure type, space group C2/m, with a=16.189(2) A, b=4.5528(6) A, c=9.2500(1) A, beta=124.572(3) degrees, and V=561.4(1) A3 (Z=2). A maximum of 44% of the Ag atoms may be replaced with Cu atoms without changing the structure type. The crystal structure is composed of Ag4Se(5)4- layers, interconnected via the Ba2+ cations. The Ag atoms show irregular [3+1] coordination by the Se atoms, and the Ba atoms are located in capped square antiprisms formed by Se atoms. Most intriguing is the unprecedented occurrence of linear Se(3)4- units. According to the formulation (Ba2+)2(Ag+)4Se(3)4-(Se2-)2, this selenide is electron-precise with eight positive charges equalizing the eight negative charges. Electronic structure calculations indicated the presence of a band gap, as was experimentally confirmed: the electrical conductivity measurement revealed a gap of 0.6 eV for Ba2CuAg3Se5.

4.
Inorg Chem ; 46(4): 1215-21, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-17243758

ABSTRACT

The title compounds were prepared from the elements between 600 and 800 degrees C in evacuated silica tubes. Both tellurides, Ba7Au2Te14 and Ba6.76Cu2.42Te14, form ternary variants of the NaBa6Cu3Te14 type, space group P63/mcm, with a = 14.2593(7) A, c = 9.2726(8) A, and V = 1632.8(2) A3 (Z = 2) for Ba7Au2Te14 and a = 14.1332(4) A, c = 9.2108(6) A, and V = 1593.3(1) A3 (Z = 2) for Ba6.76Cu2.42Te14. The Na site is filled with a Ba atom (deficient in case of the Cu telluride) and the Cu site with 66.5(3)% Au and 61.7(8)% Cu. An additional site is filled with 9.5(7)% Cu in the structure of Ba6.76Cu2.42Te14. These structures are comprised of bent Te32- units and AuTe4/CuTe4 tetrahedra, forming channels filled with Ba cations. The BaTe9 polyhedra are connecting the channels to a three-dimensional structure. According to the formulations (Ba2+)7(Au+)2(Te32-)3(Te2-)5 and (Ba2+)6.76(Cu+)2.42(Te32-)3(Te2-)5, the materials are electron-precise with 16 positive charges equalizing the 16 negative charges. Correspondingly, both tellurides are semiconductors, as experimentally confirmed, with calculated band gaps of 0.7 and 1.0 eV, respectively.

5.
Inorg Chem ; 44(14): 5042-6, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-15998032

ABSTRACT

A new quaternary layered transition-metal oxide, Na2Cu2TeO6, has been synthesized under air using stoichiometric (with respect to the cationic elements) mixtures of Na2CO3, CuO, and TeO2. Na2Cu2TeO6 crystallizes in the monoclinic space group C2/m with a = 5.7059(6) A, b = 8.6751(9) A, c = 5.9380(6) A, beta = 113.740(2) degrees, V = 269.05(5) A3, and Z = 2, as determined by single-crystal X-ray diffraction. The structure is composed of infinity(2)[Cu2TeO6] layers with the Na atoms located in the octahedral voids between the layers. Na2Cu2TeO6 is a green nonmetallic compound, in agreement with the electronic structure calculation and electrical resistance measurement. The magnetic susceptibility shows Curie-Weiss behavior between 300 and 600 K with an effective moment of 1.85(2) muB/Cu(II) and theta(c) = -87(6) K. A broad maximum at 160 K is interpreted as arising from short-range one-dimensional antiferromagnetic correlations. With the aid of the technique of magnetic dimers, the short-range order was analyzed in terms of an alternating chain model, with the surprising result that the stronger intrachain coupling involves a super-superexchange pathway with a Cu-Cu separation of >5 A. The J2/J1 ratio within the alternating chain refined to 0.10(1), and the spin gap is estimated to be 127 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...