Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 925754, 2022.
Article in English | MEDLINE | ID: mdl-35898227

ABSTRACT

Crop reproductive success is significantly challenged by heatwaves, which are increasing in frequency and severity globally. Heat-induced male sterility is mainly due to aborted pollen development, but it is not clear whether this is through direct or systemic effects. Here, long-term mild heat (LTMH) treatment, mimicking a heatwave, was applied locally to tomato flowers or whole plants and followed up by cytological, transcriptomic, and biochemical analyses. By analyzing pollen viability, LTMH was shown to act directly on the flowers and not via effects on other plant tissue. The meiosis to early microspore stage of pollen development was the most sensitive to LTMH and 3 days of exposure around this period was sufficient to significantly reduce pollen viability at the flower anthesis stage. Extensive cytological analysis showed that abnormalities in pollen development could first be observed after pollen mitosis I, while no deviations in tapetum development were observed. Transcriptomic and biochemical analyses suggested that pollen development suffered from tapetal ER stress and that there was a limited role for oxidative stress. Our results provide the first evidence that heat acts directly on flowers to induce pollen sterility, and that the molecular-physiological responses of developing anthers to the LTMH are different from those to severe heat shock.

2.
Front Plant Sci ; 13: 886541, 2022.
Article in English | MEDLINE | ID: mdl-35651779

ABSTRACT

Rising temperatures due to climate change threaten agricultural crop productivity. As a cool-season crop, wheat is heat-sensitive, but often exposed to high temperatures during the cultivation period. In the current study, a bread wheat panel of spring wheat genotypes, including putatively heat-tolerant Australian and CIMMYT genotypes, was exposed to a 5-day mild (34°C/28°C, day/night) or extreme (37°C/27°C) heat stress during the sensitive pollen developmental stage. Worsening effects on anther morphology were observed, as heat stress increased from mild to extreme. Even under mild heat, a significant decrease in pollen viability and number of grains per spike from primary spike was observed compared with the control (21°C/15°C), with Sunstar and two CIMMYT breeding lines performing well. A heat-specific positive correlation between the two traits indicates the important role of pollen fertility for grain setting. Interestingly, both mild and extreme heat induced development of new tillers after the heat stress, providing an alternative sink for accumulated photosynthates and significantly contributing to the final yield. Measurements of flag leaf maximum potential quantum efficiency of photosystem II (Fv/Fm) showed an initial inhibition after the heat treatment, followed by a full recovery within a few days. Despite this, model fitting using chlorophyll soil plant analysis development (SPAD) measurements showed an earlier onset or faster senescence rate under heat stress. The data presented here provide interesting entry points for further research into pollen fertility, tillering dynamics, and leaf senescence under heat. The identified heat-tolerant wheat genotypes can be used to dissect the underlying mechanisms and breed climate-resilient wheat.

3.
Plant Environ Interact ; 3(6): 264-289, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37284432

ABSTRACT

To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.

4.
Plant Cell Environ ; 44(7): 2245-2261, 2021 07.
Article in English | MEDLINE | ID: mdl-33715176

ABSTRACT

High night temperature (HNT) causes substantial yield loss in rice (Oryza sativa L.). In this study, the physiological processes related to flag leaf dark respiration (Rn) and grain filling under HNT were explored in a multi-parent advanced generation intercross population developed for heat tolerance (MAGICheat ) along with selected high temperature tolerant breeding lines developed with heat-tolerant parents. Within a subset of lines, flag leaf Rn under HNT treatment was related to lower spikelet number per panicle and thus reduced yield. HNT enhanced the nighttime reduction of non-structural carbohydrates (NSC) in stem tissue, but not in leaves, and stem nighttime NSC reduction was negatively correlated with yield. Between heading and harvest, the major difference in NSC concentration was found for starch, but not for soluble sugar. HNT weakened the relationship between NSC remobilization and harvest index at both the phenotypic and genetic level. By using genome-wide association studies, an invertase inhibitor, MADS box transcription factors and a UDP-glycosyltransferase that were identified as candidate genes orchestrating stem NSC remobilization in the control treatment were lost under HNT. With the identification of physiological and genetic components related to rice HNT response, this study offers promising prebreeding materials and trait targets to sustain yield stability under climate change.


Subject(s)
Oryza/physiology , Seeds/growth & development , Thermotolerance/physiology , Carbohydrate Metabolism , Darkness , Genome-Wide Association Study , Hot Temperature , Philippines , Plant Leaves/physiology , Plant Stems/genetics , Plant Stems/metabolism , Polymorphism, Single Nucleotide , Spectroscopy, Fourier Transform Infrared
5.
Plant Cell Environ ; 43(7): 1595-1608, 2020 07.
Article in English | MEDLINE | ID: mdl-32112422

ABSTRACT

Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular-physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.


Subject(s)
Crop Production , Food Security , Oryza/growth & development , Climate Change , Crop Production/methods , Food Security/methods , Heat-Shock Response , Plant Breeding
6.
Hortic Res ; 6: 113, 2019.
Article in English | MEDLINE | ID: mdl-31645967

ABSTRACT

Horticultural crops provide humans with many valuable products. The improvement of the yield and quality of horticultural crops has been receiving increasing research attention. Given the development and advantages of genome-editing technologies, research that uses genome editing to improve horticultural crops has substantially increased in recent years. Here, we briefly review the different genome-editing systems used in horticultural research with a focus on clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome editing. We also summarize recent progress in the application of genome editing for horticultural crop improvement. The combination of rapidly advancing genome-editing technology with breeding will greatly increase horticultural crop production and quality.

7.
Mol Breed ; 37(5): 58, 2017.
Article in English | MEDLINE | ID: mdl-28479863

ABSTRACT

Global warming has become a worldwide concern due to its adverse effects on agricultural output. In particular, long-term mildly high temperatures interfere with sexual reproduction and thus fruit and seed set. To uncover the genetic basis of observed variation in tolerance against heat, a bi-parental F2 mapping population from two contrasting cultivars, i.e. Nagcarlang and NCHS-1, was generated and phenotyped under continuous mild heat conditions for a number of traits underlying reproductive success, i.e. pollen viability, pollen number, style length, anther length, style protrusion, female fertility and flowering characteristics, i.e. inflorescence number and flowers per inflorescence. Quantitative trait loci (QTLs) were identified for most of these traits, including a single, highly significant one for pollen viability, which accounted for 36% of phenotypic variation in the population and modified pollen viability under high temperature with around 20%. QTLs for some traits colocalised, indicating trait dependency or pleiotropic-effect loci. We conclude that a limited set of major genes determines differences in performance of reproductive traits under continuous mild heat in tomato. The results contribute to our fundamental understanding of pollen thermotolerance and may support development of more heat-tolerant tomato varieties.

8.
PLoS One ; 11(12): e0167614, 2016.
Article in English | MEDLINE | ID: mdl-27936079

ABSTRACT

Sexual reproduction is a critical process in the life-cycle of plants and very sensitive to environmental perturbations. To better understand the effect of high temperature on plant reproduction, we cultivated tomato (Solanum lycopersicum) plants in continuous mild heat. Under this condition we observed a simultaneous reduction in pollen viability and appearance of anthers with pistil-like structures, while in a more thermotolerant genotype, both traits were improved. Ectopic expression of two pistil-specific genes, TRANSMITTING TISSUE SPECIFIC and TOMATO AGAMOUS LIKE11, in the anthers confirmed that the anthers had gained partial pistil identity. Concomitantly, expression of the B-class genes TOMATO APETALA3, TOMATO MADS BOX GENE6 (TM6) and LePISTILLATA was reduced in anthers under continuous mild heat. Plants in which TM6 was partially silenced reacted hypersensitively to temperature elevation with regard to the frequency of pistilloid anthers, pollen viability and pollen quantity. Taken together, these results suggest that high-temperature-induced down-regulation of tomato B-class genes contributes to anther deformations and reduced male fertility. Improving our understanding of how temperature perturbs the molecular mechanisms of anther and pollen development will be important in the view of maintaining agricultural output under current climate changes.


Subject(s)
Gene Expression Regulation, Plant , Pollen/growth & development , Solanum lycopersicum/growth & development , Cell Survival , Climate Change , Down-Regulation , Flowers/genetics , Flowers/growth & development , Flowers/ultrastructure , Genes, Plant , Hot Temperature , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Plant Proteins/genetics , Pollen/cytology , Pollen/genetics
9.
Front Plant Sci ; 6: 999, 2015.
Article in English | MEDLINE | ID: mdl-26635827

ABSTRACT

High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation.

SELECTION OF CITATIONS
SEARCH DETAIL
...