Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776065

ABSTRACT

Hydrogel strain sensors have received increasing attention due to their potential applications in human-machine interfaces and flexible electronics. However, they usually suffer from both mechanical and electrical hysteresis and poor water retention, which limit their practical applications. To address this challenge, a poly(acrylic acid-co-acrylamide) hydrogel crosslinked by silica nanoparticles is fabricated via photo polymerization and salting-out of hydrophilic ions for the strain sensor. The resulting hydrogel strain sensor possessed low electrical hysteresis (1.6%), low mechanical hysteresis (<7%), high cycle stability (>10 000 cycles), high durability, water retention and anti-freezing ability. Moreover, this strain sensor can be used as a wearable sensor for real-time control of robotic hands and hand gesture recognition. Finally, a sign language translation system has been demonstrated with the aid of machine learning, achieving recognition rates of over 98% for 15 different sign languages. This work offers a promising prospect for human-machine interfaces, smart wearable devices, and the Internet of Things.

2.
Adv Sci (Weinh) ; 11(23): e2401278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622885

ABSTRACT

Mechanically robust hydrogel fibers have demonstrated great potential in energy dissipation and shock-absorbing applications. However, developing such materials that are recyclable, energy-efficient, and environmentally friendly remains an enormous challenge. Herein, inspired by spider silk, a continuous and scalable method is introduced for spinning a polyacrylamide hydrogel microfiber with a hierarchical sheath-core structure under ambient conditions. Applying pre-stretch and twist in the as-spun hydrogel microfibers results in a tensile strength of 525 MPa, a toughness of 385 MJ m-3, and a damping capacity of 99%, which is attributed to the reinforcement of hydrogen-bond nanoclusters within the microfiber matrix. Moreover, it maintains both structural and mechanical stability for several days, and can be directly dissolved in water, providing a sustainable spinning dope for re-spinning into new microfibers. This work provides a new strategy for the spinning of robust and recyclable hydrogel-based fibrous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...