Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5448, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937444

ABSTRACT

Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.


Subject(s)
Actin Cytoskeleton , Actomyosin , Kinesins , Microtubules , Pollen , Microtubules/metabolism , Actin Cytoskeleton/metabolism , Kinesins/metabolism , Pollen/metabolism , Actomyosin/metabolism , Pollen Tube/metabolism , Pollen Tube/growth & development , Cell Nucleus/metabolism , Arabidopsis/metabolism , Cytoplasmic Streaming , Germination/physiology
2.
Plant Sci ; 287: 110206, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481203

ABSTRACT

A pot experiment was conducted to evaluate how nitrogen (N) availability influences cadmium (Cd) absorption, translocation and stress tolerance in roots of Populus euramericana. Seedling growth was sensitive to N deficiency, but it was unaltered by Cd exposure. Cadmium absorption by roots was promoted by N deficiency, resulting in a higher root Cd concentration compared to the N-sufficient condition. Fine-root length was tightly correlated (R2 = 0.73) with Cd concentration in roots, indicating that vigorous fine-root proliferation under N deficiency contributed to active absorption and accumulation of Cd in roots. Despite accumulation in roots, Cd translocation from roots to shoots was less active under N deficiency compared to N sufficiency. This was related to elevated glutathione reductase (GR) activity and glutathione (GSH) levels in roots after N application, which may not only promote antioxidant defence, but also facilitate the formation of GSH-Cd complexes that are uploaded into root cylinders. Nitrogen application also promoted antioxidant defense in roots via increased production of phytohormones and the level of enzymatic and non-enzymatic antioxidants. Transcript levels for genes responsible for antioxidant defense, Cd detoxification and Cd uploading were increased in roots by N application. The N-stimulated Cd tolerance, detoxification and uploading in roots are factors likely to promote Cd translocation from roots to shoots, which may enhance the biological capacity of this poplar species for phytoremediation of Cd pollution.


Subject(s)
Cadmium/metabolism , Nitrogen/deficiency , Populus/physiology , Biodegradation, Environmental , Cadmium/toxicity , Fertilizers , Glutathione/metabolism , Models, Biological , Oxidation-Reduction , Plant Roots/physiology , Seedlings/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...