Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 722: 137849, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32179300

ABSTRACT

Soil nitrogen (N) mineralization is a microbially-mediated biogeochemical process that is strongly influenced by changing climates. However, little information is available on the mechanisms behind the response of N mineralization to prolonged warming coupled with drought in soils covered by biocrusts. We used open top chambers to investigate the rate of soil N transformation (ammonification, nitrification and mineralization), enzyme activity and gene abundance in response to warming coupled with reduced precipitation over three years (2016-2018). Warming and drought significantly reduced the N transformation rate, extracellular enzyme activity, and gene abundance in moss-covered soil. For cyanobacteria-covered soil, however, it inhibited enzyme activity and increased the abundance of the nitrification-related genes and therefore nitrification rate. Our treatments had no obvious effects on N transformation and enzyme activity, but reduced gene abundance in bare soil. Biocrusts may facilitate N transformation while the degradation of moss crust caused by climate warming will dampen any regulating effect of biocrusts on the belowground microbial community. Furthermore, belowground microbial communities can mediate N transformation under ongoing warming and reduced precipitation by suppressing ammonification- and nitrification-related gene families, and by stimulating nitrification-related gene families involved in cyanobacteria-covered soil. This study provides a basis for identifying the functional genes involved in key processes in the N cycle in temperate desert ecosystems, and our results further highlight the importance of different biocrusts organisms in the N cycle in temperate deserts as Earth becomes hotter and drier.


Subject(s)
Soil Microbiology , Soil , Ecosystem , Genes, Microbial , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...