Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892079

ABSTRACT

Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.


Subject(s)
Cannabis , Fungicides, Industrial , Microbiota , Rhizosphere , Soil Microbiology , Cannabis/enzymology , Microbiota/drug effects , Fungicides, Industrial/pharmacology , Cannabinoids/pharmacology , Cannabinoids/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/enzymology , RNA, Ribosomal, 16S/genetics
2.
Protoplasma ; 260(6): 1603-1606, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37330445

ABSTRACT

The scientific interest in cannabis plants' beneficial properties has recently sparked certain interest in the possible functional characterization of plant-derived extracellular vesicles (PDEVs). Establishing the most appropriate and efficient isolation procedure for PDEVs remains a challenge due to vast differences in the physio-structural characteristics of different plants within the same genera and species. In this study, we employed a crude but standard isolation procedure for the extraction of apoplastic wash fluid (AWF) which is known to contain the PDEVs. This method includes a detailed stepwise process of PDEV extraction from five (5) cultivars of cannabis plants, namely: Citrus (C), Henola (HA), Bialobrezenski (BZ), Southern-Sunset (SS), and Cat-Daddy (CAD). Approximately, 150 leaves were collected from each plant strain. In order to collect PDEV pellets, apoplastic wash fluid (AWF) was extracted from plants via negative pressure permeabilization and infiltration followed by high-speed differential ultracentrifugation. Particle tracking analysis of PDEVs revealed particle size distribution in the range of 20 to 200 nm from all plant strains, while PDEV total protein concentration from HA was higher than that of SS. Although HA-PDEVs' total protein was higher than SS-PDEVs, SS-PDEVs' RNA yield was higher than that of HA-PDEVs. Our result suggests that the cannabis plant strains contain EVs, and PDEV concentration from the cannabis plant could be age or strain dependent. Overall, the results provide a guide for the selection and optimization of PDEV isolation methods for future studies.

3.
Foods ; 12(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36981134

ABSTRACT

The purpose of this study was to evaluate the survival rates and fermentation performance of three freeze-dried lactic acid bacterial cultures previously isolated from Ghanaian traditional fermented milk. LAB cultures, i.e., Lactobacillus delbrueckii, Lactococcus lactis and Leuconostoc mesenteroides, were frozen in the chamber of a Telstar (Lyoquest) laboratory freeze dryer for 10 h at -55 °C (as single and combined cultures) using skimmed milk and cassava flour as cryoprotectants held in plastic or glass cryovials. For viability during storage, freeze-dried LAB cultures were stored in a refrigerator (4 °C) and at room temperature (25 °C) for 4 weeks. The survival of freeze-dried cultures was determined by growth kinetics at 600 nm (OD600). The performance of freeze-dried LAB cultures after 4 weeks of storage was determined by their growth, acidification of milk during yogurt fermentation and consumer sensory evaluation of fermented milk using a nine-point hedonic scale. The survival rates for LAB ranged between 60.11% and 95.4% following freeze-drying. For single cultures, the highest survival was recorded for Lactobacillus delbrueckii (L12), whereas for combined cultures, the highest survival was observed for Lactococcus lactis (L3) combined with Lactobacillus delbrueckii (L12). The consumer acceptability results showed that yogurts produced from a combined starter culture of Lactococcus lactis and Lactobacillus delbrueckii or from a single culture of Lactococcus lactis were the most preferred products with Lactococcus lactis and Lactobacillus delbrueckii possessing high survival rates and high consumer acceptability in yogurt production. These findings are crucial and can be adopted for large-scale production and commercialization of yogurt.

4.
Front Med (Lausanne) ; 10: 1075698, 2023.
Article in English | MEDLINE | ID: mdl-36960333

ABSTRACT

The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.

5.
Metabolites ; 12(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36557285

ABSTRACT

The gut microbiome is a collection of microorganisms and parasites in the gastrointestinal tract. Many factors can affect this community's composition, such as age, sex, diet, medications, and environmental triggers. The relationship between the human host and the gut microbiota is crucial for the organism's survival and development, whereas the disruption of this relationship can lead to various inflammatory diseases. Cannabidiol (CBD) and tetrahydrocannabinol (THC) are used to treat muscle spasticity associated with multiple sclerosis. It is now clear that these compounds also benefit patients with neuroinflammation. CBD and THC are used in the treatment of inflammation. The gut is a significant source of nutrients, including vitamins B and K, which are gut microbiota products. While these vitamins play a crucial role in brain and bone development and function, the influence of gut microbiota on the gut-brain and gut-bone axes extends further and continues to receive increasing scientific scrutiny. The gut microbiota has been demonstrated to be vital for optimal brain functions and stress suppression. Additionally, several studies have revealed the role of gut microbiota in developing and maintaining skeletal integrity and bone mineral density. It can also influence the development and maintenance of bone matrix. The presence of the gut microbiota can influence the actions of specific T regulatory cells, which can lead to the development of bone formation and proliferation. In addition, its metabolites can prevent bone loss. The gut microbiota can help maintain the bone's equilibrium and prevent the development of metabolic diseases, such as osteoporosis. In this review, the dual functions gut microbiota plays in regulating the gut-bone axis and gut-brain axis and the impact of CBD on these roles are discussed.

6.
Microorganisms ; 10(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36557613

ABSTRACT

New generation antibiotics are needed to combat the development of resistance to antimicrobials. One of the most promising new classes of antibiotics is cannabidiol (CBD). It is a non-toxic and low-resistance chemical that can be used to treat bacterial infections. The antibacterial activity of Cannabis sativa L. byproducts, specifically CBD, has been of growing interest in the field of novel therapeutics. As research continues to define and characterize the antibacterial activity that CBD possesses against a wide variety of bacterial species, it is important to examine potential interactions between CBD and common therapeutics such as broad-spectrum antibiotics. In this study it is demonstrated that CBD-antibiotic (combination of CBD and antibiotic) co-therapy can effectively fight Salmonella typhimurium (S. typhimurium) via membrane integrity disruption. This research serves to examine the potential synergy between CBD and three broad-spectrum antibiotics (ampicillin, kanamycin, and polymyxin B) for potential CBD-antibiotic co-therapy. In this study, it is revealed that S. typhimurium growth is inhibited at very low dosages of CBD-antibiotic. This interesting finding demonstrates that CBD and CBD-antibiotic co-therapies are viable novel alternatives to combating S. typhimurium.

7.
Molecules ; 27(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566019

ABSTRACT

Products derived from Cannabis sativa L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research. While the psychoactive and medicinal properties of Cannabis products have been extensively highlighted in the literature, the antibacterial properties of cannabidiol (CBD) have not been explored in depth. This research serves to examine the antibacterial potential of CBD against Salmonella newington and S. typhimurium. In this study, we observed bacterial response to CBD exposure through biological assays, bacterial kinetics, and fluorescence microscopy. Additionally, comparative studies between CBD and ampicillin were conducted against S. typhimurium and S. newington to determine comparative efficacy. Furthermore, we observed potential resistance development of our Salmonella spp. against CBD treatment.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cannabidiol/pharmacology , Cannabinoids/therapeutic use , Plant Extracts/pharmacology , Salmonella typhimurium
8.
Virology ; 570: 96-106, 2022 05.
Article in English | MEDLINE | ID: mdl-35397329

ABSTRACT

Marafiviruses, including maize rayado fino virus (MRFV) and oat blue dwarf virus (OBDV), encode two carboxy co-terminal coat proteins, CP1 and CP2, which encapsidate the genome to form icosahedral virions. While CP2 expression is expected to be solely driven from a second start codon of a subgenomic RNA under a marafibox promoter sequence, the larger CP1 with an in-frame N-terminal extension relative to CP2 could potentially be expressed either by proteolytic release from the MRFV polyprotein or from subgenomic RNA translation. We examined MRFV CP expression strategy with a series of mutations in the CP coding region and identified mutants viable and nonviable for systemic plant infection. Polyprotein expression of MRFV CP1 was minimal. Mutants blocking CP2 expression failed to establish systemic infection, while mutants depleted in CP1 exhibited systemic infection and formation of virus-like particles but lost leafhopper transmissibility, indicating that CP1 is required for leafhopper transmission.


Subject(s)
Hemiptera , Tymoviridae , Animals , Polyproteins , RNA , Tymoviridae/genetics , Viral Proteins , Zea mays
9.
Microbiol Spectr ; 9(3): e0061221, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817206

ABSTRACT

The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.


Subject(s)
Hemiptera/genetics , Hemiptera/virology , Insect Proteins/genetics , Insect Vectors/genetics , Insect Vectors/virology , Tymoviridae/physiology , Animals , Hemiptera/immunology , Host-Pathogen Interactions , Insect Proteins/immunology , Insect Vectors/immunology , Plant Diseases/virology , Transcriptome , Tymoviridae/genetics , Zea mays/virology
10.
BMC Plant Biol ; 21(1): 208, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33952221

ABSTRACT

BACKGROUND: Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined. RESULTS: Infectious clones of an Ohio isolate of MDMV, MDMV OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi). CONCLUSIONS: These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.


Subject(s)
Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , Plant Diseases/genetics , Potyvirus/pathogenicity , Zea mays/genetics , Crops, Agricultural/genetics , Genetic Techniques , Ohio , Plant Viruses
11.
Mol Plant Pathol ; 22(6): 727-736, 2021 06.
Article in English | MEDLINE | ID: mdl-33829627

ABSTRACT

The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.


Subject(s)
Aphids/physiology , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant , Plant Diseases/parasitology , Reactive Oxygen Species/metabolism , Animals , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Genes, Reporter , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Peroxisomes/metabolism , Plant Leaves/genetics , Plant Leaves/parasitology , Plant Leaves/physiology
12.
Insects ; 12(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418888

ABSTRACT

The alfalfa leafcutting bee, Megachile rotundata is widely used in the western United States as a pollinator for alfalfa seed production. Unfortunately, immatures experience high mortality in agriculturally managed populations. Quantified gene expression could be used to identify how this bee responds during different life stages to pathogens, environmental toxins, and other stresses, but stably expressed reference genes are needed to normalize transcription data. We evaluated twelve candidate genes for their transcription stability across different life stages, including during and after diapause. RPS18 and RPL8 were the two most stably expressed genes, followed by RPS5 and RPL27A. These genes were also very stable even during and after diapause, while the most variable genes being APN, PMIIM, NPC2, and Cr-PII had increased expression levels during larval growth and were also variable during and after diapause. The four reference genes we identified in M. rotundata may prove useful for transcriptomic studies in other bees as well, such as honey bees.

13.
Plant Direct ; 4(8): e00224, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32783020

ABSTRACT

Maize rayado fino virus (MRFV) is the type species of the genus Marafivirus in the family Tymoviridae. It infects maize (Zea mays), its natural host, to which it is transmitted by leafhoppers including Dalbulus maidis and Graminella nigrifrons in a persistent-propagative manner. The MRFV monopartite RNA genome encodes a precursor polyprotein that is processed into replication-associated proteins. The genome is encapsidated by two carboxy co-terminal coat proteins, CP1 and CP2. Cloned MRFV can be readily transmitted to maize by vascular puncture inoculation (VPI), and such virus systems that can be used in maize are valuable to examine plant gene function by gene silencing. However, the efficacy of marafiviruses for virus-induced gene silencing (VIGS) has not been investigated to date. To this end, MRFV genomic loci were tested for their potential to host foreign insertions without attenuating virus viability. This was done using infectious MRFV clones engineered to carry maize phytoene desaturase (PDS) gene fragments (ZmPDS) at various genomic regions. Several MRFV-PDS constructs were generated and tested for infectivity and VIGS in maize. This culminated in identification of the helicase/polymerase (HEL/POL) junction as a viable insertion site that preserved virus infectivity, as well as several sites at which sequence insertion caused loss of virus infectivity. Transcripts of viable constructs, carrying PDS inserts in the HEL/POL junction, induced stable local and systemic MRFV symptoms similar to wild-type infections, and triggered PDS VIGS initiating in veins and spreading into both inoculated and noninoculated leaves. These constructs were remarkably stable, retaining inserted sequences for at least four VPI passages while maintaining transmissibility by D. maidis. Our data thus identify the MRFV HEL/POL junction as an insertion site useful for gene silencing in maize.

14.
Plant Physiol Biochem ; 117: 51-60, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28587993

ABSTRACT

Superoxide (O2-) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O2- is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O2- was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O2-), rose bengal (an inducer of singlet oxygen, 1ΔO2), and exogenous hydrogen peroxide (H2O2). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H2O2, responded more strongly to O2- than to H2O2; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O2- to H2O2. These results suggest that AtZAT12 is transcriptionally upregulated in response to O2-, and that AtZAT12::Luc may be a useful biosensor for detecting O2- generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O2- in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O2--responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O2--selective responses in dicots.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Superoxides/metabolism , Zea mays/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Paraquat/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Singlet Oxygen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Zea mays/drug effects , Zea mays/metabolism
15.
BMC Genomics ; 14: 874, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24330608

ABSTRACT

BACKGROUND: The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. RESULTS: We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. CONCLUSIONS: Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees, and perhaps results from their symbiotic relationship with plants. Many flowering plants benefit from pollinators, and thus offer these insects rewards (such as nectar) rather than defensive plant toxins.


Subject(s)
Bees/genetics , Genes, Insect , Inactivation, Metabolic/genetics , Stress, Physiological/genetics , Animals , Bees/growth & development , Bees/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Life Cycle Stages/genetics , Male , Oxidation-Reduction
16.
BMC Genomics ; 12: 161, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21435244

ABSTRACT

BACKGROUND: Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. RESULTS: To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. CONCLUSIONS: The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.


Subject(s)
Basidiomycota/genetics , Expressed Sequence Tags , Genes, Fungal , Algorithms , Basidiomycota/growth & development , Comparative Genomic Hybridization , Computational Biology , Databases, Genetic , Gene Library , Genomics/methods , Molecular Sequence Data , RNA, Fungal/genetics , Sequence Analysis, DNA , Spores, Fungal/genetics , Triticum/microbiology , Zea mays/microbiology
17.
Adv Genet ; 57: 49-96, 2007.
Article in English | MEDLINE | ID: mdl-17352902

ABSTRACT

A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.


Subject(s)
Neurospora/genetics , Base Sequence , Chromosome Mapping , DNA, Fungal/genetics , Gene Deletion , Gene Expression Profiling , Gene Library , Genetic Techniques , Genome, Fungal , Genomics , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide
18.
Ying Yong Sheng Tai Xue Bao ; 13(11): 1433-6, 2002 Nov.
Article in Chinese | MEDLINE | ID: mdl-12625001

ABSTRACT

The colonies of green peach aphid, Myzus persicae, on detached cabbage leaves (8 replicates) were initiated with each including 3 apterae exposed to 'spore shower' of the entomophthoraceous fungus, Pandora delphacis, to evaluate its potential for aphid control. The colonies were then allowed to freely propagate and infect from one to another for mycosis development at different regimes of temperature (10-30 degrees C) and relative humidity (74-100% RH). During a period of 30-day observation, aphid mycosis developed much more rapidly at the regimes of higher temperature (20-30 degrees C) and humidity (> or = 95% RH), at which, nymphs were effectively infected by contacting the conidia discharged from apterous cadavers. The efficacy of P. delphacis for control of M. persicae was easily visible at all regimes considered, despite variation in mycosis-caused mortality. Compared to the increase of M. persicae colony not contaminated with the fungal agent, the efficacy of control at all humidity regimes of 30 degrees C was the best, and it could be > 60% on day 4, and 100% on day 16. Secondary to the best, the increase of colony size at 20 and 25 degrees C was controlled by > 30% on day 8, and > 80% on day 20 at all the humidity regimes with occasional exceptions. The efficacy of control at 10 and 15 degrees C was usually inferior to those at higher temperatures, but to less degree associated with relative humidity. These results indicate that P. delphacis was of high potential for aphid control, deserving further study for practical utilization.


Subject(s)
Aphids/microbiology , Entomophthorales , Insect Control , Pest Control, Biological , Agriculture , Animals , Ecosystem , Humidity , Temperature , Zygomycosis
SELECTION OF CITATIONS
SEARCH DETAIL
...