Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(11): e2305437, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38109742

ABSTRACT

Hetero-interface engineering has been widely employed to develop supported multicomponent catalysts for water electrolysis, but it still remains a substantial challenge for supported single atom alloys. Herein a conductive oxide MoO2 supported Ir1 Ni single atom alloys (Ir1 Ni@MoO2 SAAs) bifunctional electrocatalysts through surface segregation coupled with galvanic replacement reaction, where the Ir atoms are atomically anchored onto the surface of Ni nanoclusters via the Ir-Ni coordination accompanied with electron transfer from Ni to Ir is reported. Benefiting from the unique structure, the Ir1 Ni@MoO2 SAAs not only exhibit low overpotential of 48.6 mV at 10 mA cm-2 and Tafel slope of 19 mV dec-1 for hydrogen evolution reaction, but also show highly efficient alkaline water oxidation with overpotential of 280 mV at 10 mA cm-2 . Their overall water electrolysis exhibits a low cell voltage of 1.52 V at 10 mA cm-2 and excellent durability. Experiments and theoretical calculations reveal that the Ir-Ni interface effectively weakens hydrogen binding energy, and decoration of the Ir single atoms boost surface reconstruction of Ni species to enhance the coverage of intermediates (OH*) and switch the potential-determining step. It is suggested that this approach opens up a promising avenue to design efficient and durable precious metal bifunctional electrocatalysts.

2.
ACS Appl Mater Interfaces ; 14(12): 14120-14128, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35291765

ABSTRACT

We investigate LaCo2P2 as an electrocatalytic material for oxygen evolution reaction (OER) under alkaline and acidic conditions. This layered intermetallic material was prepared via Sn-flux high-temperature annealing. The electrocatalytic ink, prepared with the ball-milled LaCo2P2 catalyst at the mass loading of 0.25 mg/cm2, shows OER activity at pH = 14, reaching current densities of 10, 50, and 100 mA/cm2 under the overpotential of 400, 440, and 460 mV, respectively. Remarkably, the electrocatalytic performance remains constant for at least 4 days. Transmission electron microscopy reveals the formation of a catalytically active CoOx shell around the pre-catalyst LaCo2P2 core during the alkaline OER. The core serves as a robust support for the in situ-formed electrocatalytic system. Similar studies under pH = 0 reveal the rapid deterioration of LaCo2P2, with the formation of LaPO4 and amorphous cobalt oxide. This study shows the viability of layered intermetallics as stable OER electrocatalysts, although further developments are required to improve the electrocatalytic performance and increase the stability at lower pH values.

3.
ACS Nano ; 13(9): 10612-10621, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31461617

ABSTRACT

Transition metal phosphides (TMPs) have recently emerged as an important type of electrode material for use in supercapacitors thanks to their intrinsically outstanding specific capacity and high electrical conductivity. Herein, we report the synthesis of bimetallic CoxNi1-xP ultrafine nanocrystals supported on carbon nanofibers (CoxNi1-xP/CNF) and explore their use as positive electrode materials of asymmetric supercapacitors. We find that the Co:Ni ratio has a significant impact on the specific capacitance/capacity of CoxNi1-xP/CNF, and CoxNi1-xP/CNF with an optimal Co:Ni ratio exhibits an extraordinary specific capacitance/capacity of 3514 F g-1/1405.6 C g-1 at a charge/discharge current density of 5 A g-1, which is the highest value for TMP-based electrode materials reported by far. Our density functional theory calculations demonstrate that the significant capacitance/capacity enhancement in CoxNi1-xP/CNF, compared to the monometallic NiP/CNF and CoP/CNF, originates from the enriched density of states near the Fermi level. We further fabricate a flexible solid-state asymmetric supercapacitor using CoxNi1-xP/CNF as positive electrode material, activated carbon as negative electrode material, and a polymer gel as the electrolyte. The supercapacitor shows a specific capacitance/capacity of 118.7 F g-1/166.2 C g-1 at 20 mV s-1, delivers an energy density of 32.2 Wh kg-1 at 3.5 kW kg-1, and demonstrates good capacity retention after 10000 charge/discharge cycles, holding substantial promise for applications in flexible electronic devices.

4.
Chem Sci ; 10(9): 2796-2804, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30997000

ABSTRACT

We report excellent electrocatalytic performance by AlFe2B2 in the oxygen-evolution reaction (OER). The inexpensive catalytic material, prepared simply by arc-melting followed by ball-milling, exhibits high stability and sustained catalytic performance under alkaline conditions. The overpotential value of 0.24 V observed at the current density of 10 mA cm-2 remained constant for at least 10 days. Electron microscopy and electron energy loss spectroscopy performed on the initial ball-milled material and on the material activated under electrocatalytic conditions suggest that the catalytic mechanism involves partial leaching of Al from the layered structure of AlFe2B2 and the formation of Fe3O4 nanoclusters on the exposed [Fe2B2] layers. Thus, the AlFe2B2 structure serves as a robust supporting material and, more importantly, as a pre-catalyst to the in situ formed active electrocatalytic sites. Comparative electrochemical measurements demonstrate that the electrocatalytic performance of the AlFe2B2-supported Fe3O4 nanoclusters substantially exceeds the results obtained with unsupported nanoparticles of Fe3O4, FeB, or such benchmark OER catalysts as IrO2 or RuO2. The excellent catalytic performance and long-term stability of this system suggests that AlFe2B2 can serve as a promising and inexpensive OER electrocatalyst.

5.
Chem Sci ; 9(14): 3470-3476, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29780476

ABSTRACT

Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi- and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH- groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm-2 and showing a high turnover frequency (TOF) of ≥0.94 s-1 at the overpotential of 350 mV.

6.
Chem Sci ; 8(4): 2952-2958, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28451361

ABSTRACT

Electrochemical water splitting into hydrogen and oxygen is a promising technology for sustainable energy storage. The development of earth-abundant transition metal phosphides (TMPs) to catalyze the hydrogen evolution reaction (HER) and TMP-derived oxy-hydroxides to catalyze the oxygen evolution reaction (OER) has recently drawn considerable attention. However, most monolithically integrated metal phosphide electrodes are prepared by laborious multi-step methods and their operational stability at high current densities has been rarely studied. Herein, we report a novel vapor-solid synthesis of single-crystalline cobalt phosphide nanowires (CoP NWs) on a porous Co foam and demonstrate their use in overall water splitting. The CoP NWs grown on the entire surface of the porous Co foam ligaments have a large aspect ratio, and hence are able to provide a large catalytically accessible surface over a given geometrical area. Comprehensive investigation shows that under the OER conditions CoP NWs are progressively and conformally converted to CoOOH through electrochemical in situ oxidation/dephosphorization; the latter serving as an active species to catalyze the OER. The in situ oxidized electrode shows exceptional electrocatalytic performance for the OER in 1.0 M KOH, delivering 100 mA cm-2 at an overpotential (η) of merely 300 mV and a small Tafel slope of 78 mV dec-1 as well as excellent stability at various current densities. Meanwhile, the CoP NW electrode exhibits superior catalytic activity for the HER in the same electrolyte, affording -100 mA cm-2 at η = 244 mV and showing outstanding stability. An alkaline electrolyzer composed of two symmetrical CoP NW electrodes can deliver 10 and 100 mA cm-2 at low cell voltages of 1.56 and 1.78 V, respectively. The CoP NW electrolyzer demonstrates exceptional long-term stability for overall water splitting, capable of working at 20 and 100 mA cm-2 for 1000 h without obvious degradation.

7.
Chemistry ; 23(36): 8749-8755, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28429831

ABSTRACT

A very easy and cost-effective approach to the fabrication of monolithic Co9 S8 water oxidation electrodes (Co@Co9 S8 ), fabricated by one-step hydrothermal treatment of commercially available cobalt foam in the presence of thiourea, is reported. The morphology, crystal structure, microstructure, and composition of as-fabricated Co@Co9 S8 electrodes were examined by using scanning electron microscopy (SEM), powder X-ray diffractometry (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS), and their electrochemical properties were investigated by cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). When used to catalyze the oxygen evolution reaction (OER) in alkaline solution, the Co@Co9 S8 electrode with an optimal Co9 S8 loading exhibits outstanding catalytic activity, requiring a low overpotential of 350 mV to deliver an anodic current density of 10 mA cm-2 and showing fast kinetics for OER with a small Tafel slope (55 mV dec-1 ) and charge-transfer resistance (0.44â€…Ω cm-2 ), which outperforms many sulfide-based OER catalysts and some state-of-the-art noble metal catalysts recently reported in the literature. Importantly, the electrodes show excellent long-term stability, and are capable of operating at both a low current density and a high current density relevant to industrial water electrolysis up to 100 hours.

8.
ChemSusChem ; 9(10): 1085-9, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27100272

ABSTRACT

Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.


Subject(s)
Carbon Dioxide/chemistry , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Catalysis , Electrochemistry , Oxidation-Reduction
9.
Chem Commun (Camb) ; 52(20): 3927-30, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26871308

ABSTRACT

The structures of PtNix nanoalloy particles were modified through thermal annealing in different atmospheres. The evolution of surface structures was uncovered by advanced transmission electron microscopy, and the structure-function correlation in methanol electro-oxidation was probed. It provided new insights into the design and synthesis of highly efficient electrocatalysts.

10.
ChemSusChem ; 8(17): 2872-6, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-25970535

ABSTRACT

Two kinds of phosphorus-modified onion-like carbons dominated by C-O-P bonds and C-P bonds were fabricated and further used as catalysts in the oxygen reduction reaction (ORR). The results show that the bonding state of phosphorus has a significant effect on the ORR catalytic activity. The formation of C-O-P bonds improves ORR activity, whereas C-P bonds play an adverse role in stabilizing the key intermediates during the ORR owing to the distorted graphitic structure, as confirmed by the work function value.


Subject(s)
Carbon/chemistry , Oxygen/chemistry , Phosphorus/chemistry , Microscopy, Electron, Transmission , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...