Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675643

ABSTRACT

The B-box proteins (BBXs) encode a family of zinc-finger transcription factors that regulate the plant circadian rhythm and early light morphogenesis. The double B-box (DBB) family is in the class of the B-box family, which contains two conserved B-box domains and lacks a CCT (CO, CO-like and TOC1) motif. In this study, the identity, classification, structures, conserved motifs, chromosomal location, cis elements, duplication events, and expression profiles of the PtrDBB genes were analyzed in the woody model plant Populus trichocarpa. Here, 12 PtrDBB genes (PtrDBB1-PtrDBB12) were identified and classified into four distinct groups, and all of them were homogeneously spread among eight out of seventeen poplar chromosomes. The collinearity analysis of the DBB family genes from P. trichocarpa and two other species (Z. mays and A. thaliana) indicated that segmental duplication gene pairs and high-level conservation were identified. The analysis of duplication events demonstrates an insight into the evolutionary patterns of DBB genes. The previously published transcriptome data showed that PtrDBB genes represented distinct expression patterns in various tissues at different stages. In addition, it was speculated that several PtrDBBs are involved in the responsive to drought stress, light/dark, and ABA and MeJA treatments, which implied that they might function in abiotic stress and phytohormone responses. In summary, our results contribute to the further understanding of the DBB family and provide a reference for potential functional studies of PtrDBB genes in P. trichocarpa.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Populus , Populus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Chromosomes, Plant/genetics , Gene Duplication , Transcriptome , Stress, Physiological/genetics , Conserved Sequence , Chromosome Mapping
2.
BMC Genom Data ; 24(1): 37, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37403017

ABSTRACT

The Golden2-like (GLK) transcription factors are plant-specific transcription factors (TFs) that perform extensive and significant roles in regulating chloroplast development. Here, genome-wide identification, classification, conserved motifs, cis-elements, chromosomal locations, evolution and expression patterns of the PtGLK genes in the woody model plant Populus trichocarpa were analyzed in detail. In total, 55 putative PtGLKs (PtGLK1-PtGLK55) were identified and divided into 11 distinct subfamilies according to the gene structure, motif composition and phylogenetic analysis. Synteny analysis showed that 22 orthologous pairs and highly conservation between regions of GLK genes across P. trichocarpa and Arabidopsis were identified. Furthermore, analysis of the duplication events and divergence times provided insight into the evolutionary patterns of GLK genes. The previously published transcriptome data indicated that PtGLK genes exhibited distinct expression patterns in various tissues and different stages. Additionally, several PtGLKs were significantly upregulated under the responses of cold stress, osmotic stress, and methyl jasmonate (MeJA) and gibberellic acid (GA) treatments, implying that they might take part in abiotic stress and phytohormone responses. Overall, our results provide comprehensive information on the PtGLK gene family and elucidate the potential functional characterization of PtGLK genes in P. trichocarpa.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Phylogeny , Gene Expression Profiling , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...