Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(6): 3436-3450, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36867549

ABSTRACT

Phenoxy acetophenones were usually employed as ß-O-4' lignin models for chemical conversion. Herein, an iridium-catalyzed dehydrogenative annulation between 2-aminobenzylalcohols and phenoxy acetophenones was demonstrated to prepare valuable 3-oxo quinoline derivatives, which are hard to prepare using previous methods. This operationally simple reaction tolerated a wide scope of substrates and enabled successful gram-scale preparation.

2.
IEEE Trans Neural Netw Learn Syst ; 33(10): 5751-5765, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33857002

ABSTRACT

Scene classification of high spatial resolution (HSR) images can provide data support for many practical applications, such as land planning and utilization, and it has been a crucial research topic in the remote sensing (RS) community. Recently, deep learning methods driven by massive data show the impressive ability of feature learning in the field of HSR scene classification, especially convolutional neural networks (CNNs). Although traditional CNNs achieve good classification results, it is difficult for them to effectively capture potential context relationships. The graphs have powerful capacity to represent the relevance of data, and graph-based deep learning methods can spontaneously learn intrinsic attributes contained in RS images. Inspired by the abovementioned facts, we develop a deep feature aggregation framework driven by graph convolutional network (DFAGCN) for the HSR scene classification. First, the off-the-shelf CNN pretrained on ImageNet is employed to obtain multilayer features. Second, a graph convolutional network-based model is introduced to effectively reveal patch-to-patch correlations of convolutional feature maps, and more refined features can be harvested. Finally, a weighted concatenation method is adopted to integrate multiple features (i.e., multilayer convolutional features and fully connected features) by introducing three weighting coefficients, and then a linear classifier is employed to predict semantic classes of query images. Experimental results performed on the UCM, AID, RSSCN7, and NWPU-RESISC45 data sets demonstrate that the proposed DFAGCN framework obtains more competitive performance than some state-of-the-art methods of scene classification in terms of OAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...