Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Inorg Chem ; 63(19): 8822-8831, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696545

ABSTRACT

This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.

2.
J Vasc Res ; : 1-13, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38615660

ABSTRACT

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.

3.
Cancer Med ; 13(7): e7111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566587

ABSTRACT

OBJECTIVE: The primary aim of this study was to create a nomogram for predicting survival outcomes in penile cancer patients, utilizing data from the Surveillance, Epidemiology, and End Results (SEER) and a Chinese organization. METHODS: Our study involved a cohort of 5744 patients diagnosed with penile cancer from the SEER database, spanning from 2004 to 2019. In addition, 103 patients with penile cancer from Sun Yat-sen Memorial Hospital of Sun Yat-sen University were included during the same period. Based on the results of regression analysis, a nomogram is constructed and validated internally and externally. The predictive performance of the model was evaluated by concordance index (c-index), area under the curve, decision curve analysis, and calibration curve, in internal and external datasets. Finally, the prediction efficiency is compared with the TNM staging model. RESULTS: A total of 3154 penile patients were randomly divided into the training group and the internal validation group at a ratio of 2:1. Nine independent risk factors were identified, including age, race, marital status, tumor grade, histology, TNM stage, and the surgical approach. Based on these factors, a nomogram was constructed to predict OS. The nomogram demonstrated relatively better consistency, predictive accuracy, and clinical relevance, with a c-index over 0.73 (in the training cohort, the validation cohort, and externally validation cohort.) These evaluation indexes are far better than the TNM staging system. CONCLUSION: Penile cancer, often overlooked in research, has lacked detailed investigative focus and guidelines. This study stands as the first to validate penile cancer prognosis using extensive data from the SEER database, supplemented by data from our own institution. Our findings equip surgeons with an essential tool to predict the prognosis of penile cancer better suited than TNM, thereby enhancing clinical decision-making processes.


Subject(s)
Nomograms , Penile Neoplasms , Humans , Male , Calibration , China , Penile Neoplasms/diagnosis , Prognosis , SEER Program
4.
Cell Oncol (Dordr) ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427207

ABSTRACT

PURPOSE: The Chromobox (CBX) family proteins are crucial elements of the epigenetic regulatory machinery and play a significant role in the development and advancement of cancer. Nevertheless, there is limited understanding regarding the role of CBXs in development or progression of prostate cancer (PCa). Our objective is to develop a unique prognostic model associated with CBXs to improve the accuracy of predicting outcomes of patients with PCa. METHODS: Data from TCGA and GEO databases were analyzed to assess differential expression, prognostic value, gene pathway enrichment, and immune cell infiltration. COX regression analysis was utilized to identify the independent prognostic factors that impact disease-free survival (DFS). The expression of CBX2 and FOXP3+ cells infiltration was verified by immunohistochemical staining of clinical tissue sections. In vitro proliferation, migration and invasion assay were conducted to examine the function of CBX2. RNA-seq was employed to examine the CBX2 related pathway enrichment. RESULTS: CBX2, CBX3, CBX4, and CBX8 were upregulated, while CBX6 and CBX7 were downregulated in PCa tissues. CBXs expression varied by stage and grade. Elevated expression of CBX1, CBX2, CBX3, CBX4 and CBX8 is correlated with poor outcome. CBX2 expression, T stage, and Gleason score were independent prognostic factors. The expression level of CBX2 in PCa tissues was significantly higher than that in adjacent normal tissues. More Treg infiltration was observed in the group with high CBX2 expression. CBX2 expression affected PCa cell growth, migration, and invasion. CONCLUSIONS: CBX2 is involved in the development and advancement of PCa, suggesting its potential as a reliable prognostic indicator for PCa patients.

5.
Environ Pollut ; 349: 123851, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38527582

ABSTRACT

Due to global climate change and intensifying anthropogenic pollution, China confronts the dual challenge of controlling particulate matter 2.5 µm (PM2.5) pollution and reducing carbon emissions. Quantifying the characteristics of PM2.5 concentrations and CO2 emissions, as well as identifying the driving factors and synergistic effects of PM2.5 reduction and CO2 mitigation, are crucial steps in promoting sustainable urban development and achieving the Sustainable Development Goals (SDGs) in China. In this study, we selected 168 cities as our case-study, and quantified spatial characteristics of PM2.5 concentrations and CO2 emissions from 2015 to 2020 in China. Then we analyzed driving factors affecting the spatial heterogeneity of PM2.5 reduction and CO2 mitigation applying Multi-scale Geographically Weighted Regression (MGWR) model. By employing coupling coordination degree (CCD) model, we further detected the spatiotemporal evolution patterns of the synergistic effects between PM2.5 reduction and CO2 mitigation in key Chinese cities. The result showed that: (a) From 2015 to 2020, PM2.5 concentrations experienced a significant reduction from 59.78 µg/m3 to 49.83 µg/m3, while CO2 emissions increased from 44.88 × 106 t in 2015 to 45.77 × 106 t in 2020; (b) Green economy efficiency (gee), government attention (gover), and environmental regulation (envir) demonstrate the most pronounced synergistic effect on pollution reduction and carbon mitigation, with the drivers exhibiting obvious spatial heterogeneity; (c) The overall coupling coordination level of PM2.5 pollution and CO2 emissions in China dropped from 0.49 in 2015 to 0.46 in 2020, and the coupling coordination grade in northern cities was notably higher than that in southern cities. The result enhances our understanding of spatiotemporal patterns of synergistic effects between PM2.5 reduction and CO2 mitigation, and provides the theoretical basis for policy decision-making to realize pollution decrease and carbon neutral and regional environment governance.


Subject(s)
Air Pollutants , Air Pollution , Carbon Dioxide , Environmental Monitoring , Particulate Matter , China , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Particulate Matter/analysis , Carbon Dioxide/analysis , Cities , Climate Change , Carbon/analysis
6.
Inorg Chem ; 63(14): 6435-6444, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38537132

ABSTRACT

Two novel six-membered perimidocarbene (PIC)-based tetradentate Pt(II) complexes were designed and successfully synthesized. Systematical experimental and theoretical studies suggest that the PIC moiety greatly affects the frontier orbitals, as well as the photophysical and excited-state properties of the Pt(II) complexes. PtYK2 has a broad emission spectrum peaking at 576 nm with a shoulder band at 620 nm, along with a full width at half-maximum (FWHM) value of 100.0 nm at 77 K in 2-MeTHF; however, the emission spectrum is slightly red-shifted with a dominant peak at 610 nm and a FWHM value of 125.0 nm at room temperature in a poly(methyl methacrylate) (PMMA) film. Time-dependent-density functional theory and natural transition orbital analyses reveal that PtYK2 has a 3LC (3πPIC* → πPIC)-dominated character with an unexpectedly negligible contribution of 3MLCT transition (0.68%) in the T1 state, which results in a broad emission spectrum and a relatively low quantum efficiency of 7.4% in the PMMA film.

7.
Sci Total Environ ; 924: 171686, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485026

ABSTRACT

Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.


Subject(s)
Methylococcaceae , Petroleum , Oil and Gas Fields , Methane , Soil , Bioprospecting , Soil Microbiology , Phylogeny , Oxidation-Reduction
8.
Microorganisms ; 12(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38399776

ABSTRACT

Methane-oxidizing bacteria (MOB) have long been recognized as an important bioindicator for oil and gas exploration. However, due to their physiological and ecological diversity, the distribution of MOB in different habitats varies widely, making it challenging to authentically reflect the abundance of active MOB in the soil above oil and gas reservoirs using conventional methods. Here, we selected the Puguang gas field of the Sichuan Basin in Southwest China as a model system to study the ecological characteristics of methanotrophs using culture-independent molecular techniques. Initially, by comparing the abundance of the pmoA genes determined by quantitative PCR (qPCR), no significant difference was found between gas well and non-gas well soils, indicating that the abundance of total MOB may not necessarily reflect the distribution of the underlying gas reservoirs. 13C-DNA stable isotope probing (DNA-SIP) in combination with high-throughput sequencing (HTS) furthermore revealed that type II methanotrophic Methylocystis was the absolutely predominant active MOB in the non-gas-field soils, whereas the niche vacated by Methylocystis was gradually filled with type I RPC-2 (rice paddy cluster-2) and Methylosarcina in the surface soils of gas reservoirs after geoscale acclimation to trace- and continuous-methane supply. The sum of the relative abundance of RPC-2 and Methylosarcina was then used as specific biotic index (BI) in the Puguang gas field. A microbial anomaly distribution map based on the BI values showed that the anomalous zones were highly consistent with geological and geophysical data, and known drilling results. Therefore, the active but not total methanotrophs successfully reflected the microseepage intensity of the underlying active hydrocarbon system, and can be used as an essential quantitative index to determine the existence and distribution of reservoirs. Our results suggest that molecular microbial techniques are powerful tools for oil and gas prospecting.

9.
Biosci Biotechnol Biochem ; 88(5): 546-554, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38409797

ABSTRACT

Human lysozyme (hLYZ) has attracted considerable research attention due to its natural and efficient antibacterial abilities and widespread uses. In this study, hLYZ was modified to enhance its enzyme activity and expressed in a Pichia pastoris expression system. A combination mutant HZM(2R-K)-N88D/V110S demonstrated the highest enzyme activity (6213 ± 164 U/mL) in shake flasks, which was 4.07-fold higher when compared with the original strain. Moreover, the recombinant P. pastoris was inducted in a 3 L bioreactor plus methanol/sorbitol co-feeding. After 120 h induction, the antibacterial activity of hLYZ reached 2.23 ± 0.12 × 105 U/mL, with the specific activity increasing to 1.89 × 105 U/mg, which is currently the highest specific activity obtained through recombinant expression of hLYZ. Also, hLYZ supernatants showed 2-fold inhibitory effects toward Staphylococcus aureus and Micrococcus lysodeikticus when compared with HZM(2R-K). Our research generated a hLYZ mutant with high antibacterial capabilities and provided a method for screening of high-quality enzymes.


Subject(s)
Anti-Bacterial Agents , Muramidase , Recombinant Proteins , Staphylococcus aureus , Muramidase/genetics , Muramidase/pharmacology , Muramidase/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Staphylococcus aureus/drug effects , Bioreactors , Micrococcus/drug effects , Gene Expression , Mutation , Saccharomycetales/genetics , Microbial Sensitivity Tests
10.
BMC Cancer ; 24(1): 44, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191330

ABSTRACT

PURPOSE: Prostate cancer (PCa) is one of the major tumor diseases that threaten men's health globally, and biochemical recurrence significantly impacts its prognosis. Disulfidptosis, a recently discovered cell death mechanism triggered by intracellular disulfide accumulation leading to membrane rupture, is a new area of research in the context of PCa. Currently, its impact on PCa remains largely unexplored. This study aims to investigate the correlation between long non-coding RNAs (lncRNAs) associated with disulfidptosis and the prognosis of PCa, seeking potential connections between the two. METHODS: Transcriptomic data for a PCa cohort were obtained from the Cancer Genome Atlas database. Disulfidptosis-related lncRNAs (DDRLs) were identified through differential expression and Pearson correlation analysis. DDRLs associated with biochemical recurrence-free survival (BRFS) were precisely identified using univariate Cox and LASSO regression, resulting in the development of a risk score model. Clinical factors linked to BRFS were determined through both univariate and multivariate Cox analyses. A prognostic nomogram combined the risk score with key clinical variables. Model performance was assessed using Receiver Operating Characteristic (ROC) curves, Decision Curve Analysis (DCA), and calibration curves. The functional impact of a critical DDRL was substantiated through assays involving CCK8, invasion, migration, and cell cloning. Additionally, immunohistochemical (IHC) staining for the disulfidptosis-related protein SLC7A11 was conducted. RESULTS: The prognostic signature included AC026401.3, SNHG4, SNHG25, and U73166.1 as key components. The derived risk score from these signatures stood as one of the independent prognostic factor for PCa patients, correlating with poorer BRFS in the high-risk group. By combining the risk score with clinical variables, a practical nomogram was created, accurately predicting BRFS of PCa patients. Notably, silencing AC026401.3 significantly hindered PCa cell proliferation, invasion, migration, and colony formation. IHC staining revealed elevated expression of the dithiosulfatide-related protein SLC7A11 in tumor tissue. CONCLUSIONS: A novel prognostic signature for PCa DDRLs, possessing commendable predictive power, has been constructed, simultaneously providing potential therapeutic targets associated with disulfidptosis, among which AC026401.3 has been validated in vitro and demonstrated inhibition of PCa tumorigenesis after its silencing.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , Prognosis , RNA, Long Noncoding/genetics , Prostatic Neoplasms/genetics , Nomograms , Calibration
11.
J Am Chem Soc ; 146(2): 1667-1680, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38175122

ABSTRACT

Ultraviolet organic light-emitting diodes (UV OLEDs) have attracted increasing attention because of their promising applications in healthcare, industry, and agriculture; however, their development has been hindered by the shortage of robust UV emitters. Herein, we embedded double boron-oxygen units into nonlinear polycyclic aromatic hydrocarbons (BO-PAHs) to regulate their molecular configurations and excited-state properties, enabling novel bent BO-biphenyl (BO-bPh) and helical BO-naphthyl (BO-Nap) emitters with hybridized local and charge-transfer (HLCT) characteristics. They could be facilely synthesized in gram-scale amounts via a highly efficient two-step route. BO-bPh and BO-Nap showed strong UV and violet-blue photoluminescence in toluene with full width at half-maximum values of 25 and 37 nm, along with quantum efficiencies of 98 and 99%, respectively. A BO-bPh-based OLED showed high color purity UV electroluminescence peaking at 394 nm with Commission Internationale de l'Eclairage (CIE) coordinates of (0.166, 0.021). Moreover, the device demonstrated a record-high maximum external quantum efficiency (EQE) of 11.3%, achieved by successful hot exciton utilization. This work demonstrates the promising potential of double BO-PAHs as robust emitters for future UV OLEDs.

12.
J Phys Condens Matter ; 36(17)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38237180

ABSTRACT

High-quality epitaxial graphene (EG) on SiC is crucial to high-performance electronic devices due to the good compatibility with Si-based semiconductor technology. Metal intercalation has been considered as a basic technology to modify EG on SiC. In the past ten years, there have been extensive research activities on the structural evolution during EG fabrication, characterization of the atomic structure and electronic states of EG, optimization of the fabrication process, as well as modification of EG by metal intercalation. In this perspective, the developments and breakthroughs in recent years are summarized and future expectations are discussed. A good understanding of the growth mechanism of EG and subsequent metal intercalation effects is fundamentally important.

13.
Clin Transl Oncol ; 26(5): 1240-1255, 2024 May.
Article in English | MEDLINE | ID: mdl-38070051

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in regulating the clinical outcome and radiotherapy prognosis of prostate cancer (PCa). The aim of this study is to identify CAFs-related genes (CAFsRGs) using single-cell analysis and evaluate their potential for predicting the prognosis and radiotherapy prognosis in PCa. METHODS: We acquire transcriptome and single-cell RNA sequencing (scRNA-seq) results of PCa and normal adjacent tissues from The GEO and TCGA databases. The "MCPcounter" and "EPIC" R packages were used to assess the infiltration level of CAFs and examine their correlation with PCa prognosis. ScRNA-seq and differential gene expression analyses were used to extract CAFsRGs. We also applied COX and LASSO analysis to further construct a risk score (CAFsRS) to assess biochemical recurrence-free survival (BRFS) and radiotherapy prognosis of PCa. The predictive efficacy of CAFsRS was evaluated by ROC curves and subgroup analysis. Finally, we integrated the CAFsRS gene signature with relevant clinical features to develop a nomogram, enhancing the predictive accuracy. RESULTS: The abundance of CAFs is associated with a poor prognosis of PCa patients. ScRNA-seq and differential gene expression analysis revealed 323 CAFsRGs. After COX and LASSO analysis, we obtained seven CAFsRGs with prognostic significance (PTGS2, FKBP10, ENG, CDH11, COL5A1, COL5A2, and SRD5A2). Additionally, we established a risk score model based on the training set (n = 257). The ROC curve was used to confirm the performance of CAFsRS (The AUC values for 1, 3 and 5-year survival were determined to be 0.732, 0.773, and 0.775, respectively.). The testing set (n = 129), GSE70770 set (n = 199) and GSE116918 set (n = 248) revealed that the model exhibited exceptional predictive performance. This was also confirmed by clinical subgroup analysis. The violin plot demonstrated a statistically significant disparity in the CAFs infiltrations between the high-risk and low-risk groups of CAFsRS. Further analysis confirmed that both CAFsRS and T stage were independent prognostic factors for PCa. The nomogram was then established and its excellent predictive performance was demonstrated through calibration and ROC curves. Finally, we developed an online prognostic prediction app ( https://sysu-symh-cafsnomogram.streamlit.app/ ) to facilitate the practical application of the nomogram. CONCLUSIONS: The prognostic prediction risk score model we constructed could accurately predict BRFS and radiotherapy prognosis PCa, which can provide new ideas for clinicians to develop personalized PCa treatment and follow-up programs.

14.
Artif Organs ; 48(5): 504-513, 2024 May.
Article in English | MEDLINE | ID: mdl-38146899

ABSTRACT

BACKGROUND: A percutaneous ventricular assist device (pVAD) is an effective method to treat heart failure, but its complications, mainly hemolysis and thrombus formation, cannot be ignored. Accurate evaluation of hemolysis and thrombus formation in pVAD is essential to guide the development of pVAD and reduce the incidence of complications. METHODS: This study optimized the numerical model to predict hemolysis and thrombus formation in pVAD. The hemolysis model is based on the power law function, and the multi-component thrombus prediction model is improved by introducing the von Willebrand factor. RESULTS: The error between the numerical simulation and the hydraulic performance experiment is within 5%. The numerical results of hemolysis are in good agreement with those of in vitro experiments. Meanwhile, the thrombus location predicted by the numerical model is the same as that found in the in vivo experiment. CONCLUSION: The numerical model suggested in this study may therefore accurately assess the possible hemolytic and thrombotic dangers in pVAD, making it an effective tool to support the development of pVAD.


Subject(s)
Heart Failure , Heart-Assist Devices , Thrombosis , Humans , Hemolysis , Heart-Assist Devices/adverse effects , Heart Failure/surgery , Computer Simulation , Thrombosis/etiology
15.
Nat Commun ; 14(1): 7089, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925472

ABSTRACT

An efficient one-pot strategy for the facile synthesis of double boron-oxygen-fused polycyclic aromatic hydrocarbons (dBO-PAHs) with high regioselectivity and efficient skeletal editing is developed. The boron-oxygen-fused rings exhibit low aromaticity, endowing the polycyclic aromatic hydrocarbons with high chemical and thermal stabilities. The incorporation of the boron-oxygen units enables the polycyclic aromatic hydrocarbons to show single-component, low-temperature ultralong afterglow of up to 20 s. Moreover, the boron-oxygen-fused polycyclic aromatic hydrocarbons can also serve as ideal n-type host materials for high-brightness and high-efficiency deep-blue OLEDs; compared to single host, devices using boron-oxygen-fused polycyclic aromatic hydrocarbons-based co-hosts exhibit dramatically brightness and efficiency enhancements with significantly reduced efficiency roll-offs; device 9 demonstrates a high color-purity (Commission International de l'Eclairage CIEy = 0.104), and also achieves a record-high external quantum efficiency (28.0%) among Pt(II)-based deep-blue OLEDs with Commission International de l'Eclairage CIEy < 0.20; device 10 achieves a maximum brightnessof 27219 cd/m2 with a peak external quantum efficiency of 27.8%, which representes the record-high maximum brightness among Pt(II)-based deep-blue OLEDs. This work demonstrates the great potential of the double boron-oxygen-fused polycyclic aromatic hydrocarbons as ultralong afterglow and n-type host materials in optoelectronic applications.

16.
Ecotoxicol Environ Saf ; 268: 115692, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981439

ABSTRACT

Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.


Subject(s)
Heart Defects, Congenital , Heart Failure, Systolic , Animals , Humans , Zebrafish , Heart Failure, Systolic/metabolism , Heart Failure, Systolic/pathology , Oxidative Stress , Heart Defects, Congenital/chemically induced , Immunosuppression Therapy , Embryo, Nonmammalian
17.
BMC Cancer ; 23(1): 741, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37563543

ABSTRACT

BACKGROUND: SPOCK3 is a secreted extracellular matrix proteoglycan. This study aimed to investigate the effect of SPOCK3 on the malignant progression of prostate cancer and to construct a prognostic model to predict DFS of patients with prostate cancer. METHODS: Clinical and transcriptome sequencing data for prostate cancer were download from the TCGA and GEO databases. The survival curve showed that SPOCK3 has prognostic significance. GO, KEGG, and GSEA enrichment analysis were used to investigate how SPOCK3 affects the malignant progression of prostate cancer. Based on ESTIMATE and ssGSEA, the relationship between SPOCK3 and immune cell infiltration in prostate cancer tissue was clarified. Univariate and multivariate COX regression analysis was used to identify the independent prognostic factors of prostate cancer OS and to construct a nomogram. The calibration curve and ROC curves were drawn to assess the nomogram's predictive power. RESULTS: The survival curve revealed that patients in the low-expression group of SPOCK3 had a poor prognosis. According to enrichment analysis, SOPCK3-related genes were enriched in collagen-containing extracellular matrix, PI3K-Akt, and MAPK signaling pathway. ESTIMATE analysis revealed that SPOCK3 expression was positively correlated with the interstitial score, immune score, and ESTIMATE score. The results of ssGSEA analysis revealed that the infiltration levels of Mast cells, NK cells, and B cells were higher in the SPOCK3 high expression group. Cox regression analysis showed that SPOCK3 expression level, T and Gleason score were independent risk factors of patient prognosis, and a nomogram was constructed. The ROC curve showed the AUCs of DFS at 2, 3, and 5 years. CONCLUSION: SPOCK3 is a protective factor for DFS in prostate cancer patients. SPOCK3 is significantly associated with immune cell infiltration. The prognostic model constructed based on SPOCK3 has excellent predictive performance.


Subject(s)
Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Humans , Male , Area Under Curve , Nomograms , Prognosis , Prostatic Neoplasms/genetics
18.
Nutr Res Pract ; 17(4): 682-697, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529260

ABSTRACT

BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

19.
Inorg Chem ; 62(32): 13156-13164, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37531143

ABSTRACT

A series of novel tetradentate 6/6/6 Pt(II) complexes containing an 8-phenylquinoline-benzo[d]imidazole-carbazole ligand was designed; the Pt(II) complexes could be synthesized by metalizing the corresponding ligand with K2PtCl4 in high isolated yields of 60-90%. Experimental and theoretical studies suggested that the ligand modification of the quinoline moieties of the Pt(II) complexes could tune their electrochemical, photophysical, and excited-state properties. Notably, all the Pt(II) complexes exhibited highly electrochemical stabilities with reversible redox processes except the quasi-reversible reduction of PtYL3. The large π-conjugation of the ligand together with increased metal-to-ligand charge-transfer (3MLCT) characters in T1 states enabled the Pt(II) complexes to show broad Gaussian-type NIR emission spectra with high photoluminescence quantum efficiencies of 1.2-1.5% and short τ of 0.8-1.5 µs in dichloromethane at room temperature. This work should provide a valuable reference for the design and development of monomer NIR emitters.

20.
AMB Express ; 13(1): 53, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266757

ABSTRACT

Tea polyphenols (TP) are the most biologically active components in tea, with antioxidant, antiobesity, and antitumor properties, as well as the ability to modulate the composition and function of intestinal microbiota. This experimental study evaluated the chemical constituents of polyphenols in Pu-erh (PTP) and Dian Hong tea (DHTP). It also investigated the co-regulatory effects of PTP and DHTP on intestinal flora and liver tissues in mice using 16 S rRNA gene and transcriptome sequencing. The results revealed that DHT had higher concentrations of EGC (epigallocatechin), C (catechin), EC (epicatechin), and EGCG (epigallocatechin gallate). In contrast, PT had higher concentrations of GA (gallic acid), ECG (epicatechin-3-gallate), TF (theaflavin), and TB (theabrownin). PTP and DHTP consumption significantly reduced the rates of weight gain in mice. Microbial community diversity was significantly higher in PTP and DHTP-treated mice than in the control group. Notably, beneficial microbes such as Lactobacillus increased significantly in PTP-treated mice, whereas Lachnospiraceae increased significantly in DHTP-treated mice. Both PTP and DHTP improved the activity of the antioxidant enzymes (SOD) and total antioxidant capacity (T-AOC) in the liver. The transcriptome analysis revealed that the beneficial effects of PTP and DHTP were due to changes in various metabolic pathways, the majority of which were related to antioxidant and lipid metabolism. This study discovered that PTP and DHTP had beneficial effects in mice via the gut-liver axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...