Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 438: 137961, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38011791

ABSTRACT

Antibiotic detection is crucial and challenging because the widespread consumption of antibiotics has shown extensive harmful effects on food, environment and human health. Here, we propose highly water-soluble and biocompatible hyaluronic acid (HYA) functionalized upconversion nanoparticles (UCNPs) for ratiometric detection of multiple antibiotics. The ultraviolet upconversion luminescence (UCL) from UCNPs was significantly quenched by nitrofurazone (NFZ)/nitrofurantoin (NFT), and blue UCL was quenched by doxorubicin (DOX), while red UCL remained unchanged for internal reference. The UCNPs-HYA nanoprobes exhibit excellently sensitive and selective NFZ, NFT and DOX detection in linear range of 2.5-100 µM, 2.5-80 µM, and 2.5-200 µM with the LOD at 0.28 µM (55 µg/kg), 0.20 µM (48 µg/kg) and 0.17 µM (97 µg/kg), respectively. The nanoprobes achieved detecting real samples of NFZ in lake water, liquid milk and chicken meat with satisfactory results, and UCL bioimaging of DOX in HeLa cells. The UCNPs-HYA ratiometric nanoprobes are promising for food samples detection and potential biosensing in the cellular environment.


Subject(s)
Nanoparticles , Nitrofurans , Humans , HeLa Cells , Hyaluronic Acid , Water , Doxorubicin , Anti-Bacterial Agents
2.
J Ethnopharmacol ; 279: 113703, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-33340599

ABSTRACT

ETHNO PHARMACOLOGICAL RELEVANCE: Curcuma longa L is traditionally used as an anti-inflammatory remedy in Chinese traditional medicine. Curcuma oil (CO), a lipophilic fraction from Curcuma longa L. has been reported to have anti-proliferative, anti-inflammatory and anti-oxidant activities. However, CO has never been investigated for its possible therapeutic effects on benign prostatic hyperplasia (BPH). AIMS OF THE STUDY: The study is thus to determine the therapeutic effects of curcuma oil on BPH and also the possible mechanism (s) of action. MATERIALS &METHODS: A BPH-1 cell line and Sprague Dawley (SD) rats were used to establish BPH models in vitro and in vivo, respectively. Rats were treated by CO (2.4, 7.2 mg/kg/i.g.) and finasteride (5 mg/kg/i.g.), respectively. Histological changes were examined by hematoxylin and eosin (H&E) staining. Protein expression was analyzed for 5α-reductase (5AR), dihydrotestosterone (DHT), interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α by ELISA. Ki-67, Caspase-8,-9 and -3 expressions were evaluated via immunohistochemistry (IHC). RESULTS: CO effectively induced apoptosis in BPH-1 cells. BPH was successfully established by administration of testosterone propionate (TP) in rats, which upregulated both 5α-reductase expression and DHT production. Importantly, TP establishment significantly stimulated the phosphorylation of p65, one subunit of NF-κB, thus led to activation of the NF-κB signaling pathway in prostatic tissues of rats. In turn, the activation of NF-κB pathway induced concomitant upregulation of proinflammatory factors IL-1ß, IL-6, TNF-α, and COX-2 and significant increase of the Bcl2/Bax expression ratio for enhanced cell survival, contributing to the initiation and progression of BPH in rats. Notably, CO therapy significantly decreased prostate weight and hyperplasia in BPH-induced animals. Also CO was found to suppress the expression of 5α-reductase and thus the production of DHT, which is essential for the amelioration of BPH. More importantly, CO was shown to suppress the activation of NF-κB pathway through decreasing the expression of phosphorylated p65 and consequently reduced the inflammatory responses and cell survival in prostatic tissues, leading to the inhibition of BPH development in rats. CONCLUSION: Curcuma oil is very effective for ameliorating BPH in rats. The underlying mechanisms involve in reduced inflammatory responses and cell survival through suppression of the NF-κB signaling pathway by CO in prostatic tissues.


Subject(s)
Curcuma/chemistry , NF-kappa B/metabolism , Plant Oils/pharmacology , Prostatic Hyperplasia/drug therapy , Animals , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Disease Progression , Humans , Inflammation/drug therapy , Inflammation/pathology , Male , Plant Oils/isolation & purification , Prostatic Hyperplasia/physiopathology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...