Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(1): 442-452, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36576408

ABSTRACT

The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.


Subject(s)
Singlet Oxygen , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Hydrogen Peroxide , Antioxidants/chemistry , Lipids/chemistry
2.
ACS Pharmacol Transl Sci ; 4(2): 780-789, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860201

ABSTRACT

Inositol hexakisphosphate kinases (IP6Ks) catalyze pyrophosphorylation of inositol hexakisphosphate (IP6) into inositol 5-diphospho-1,2,3,4,6-pentakisphosphate (IP7), which is involved in numerous areas of cell physiology including glucose homeostasis, blood coagulation, and neurological development. Inhibition of IP6Ks may be effective for the treatment of Type II diabetes, obesity, metabolic complications, thrombosis, and psychiatric disorders. We performed a high-throughput screen (HTS) of 158 410 compounds for IP6K1 inhibitors using a previously developed ADP-Glo Max assay. Of these, 1206 compounds were found to inhibit IP6K1 kinase activity by more than 25%, representing a 0.8% hit rate. Structural clustering analysis of HTS-active compounds, which were confirmed in the dose-response testing using the same kinase assay, revealed diverse clusters that were feasible for future structure-activity relationship (SAR) optimization to potent IP6K inhibitors. Medicinal chemistry SAR efforts in three chemical series identified potent IP6K1 inhibitors which were further validated in an orthogonal LC-MS IP7 analysis. The effects of IP6K1 inhibitors on cellular IP7 levels were further confirmed and were found to correlate with cellular IP6K1 binding measured by a high-throughput cellular thermal shift assay (CETSA).

SELECTION OF CITATIONS
SEARCH DETAIL
...