Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(9): e0254627, 2021.
Article in English | MEDLINE | ID: mdl-34492027

ABSTRACT

We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Particulate Matter/analysis , Sophora/chemistry , Adsorption , China , Environmental Monitoring , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/metabolism , Sophora/anatomy & histology , Sophora/metabolism
2.
Biotechnol Prog ; 24(2): 302-10, 2008.
Article in English | MEDLINE | ID: mdl-18333624

ABSTRACT

A recombinant cyclophilin A (CypA) mutant, which carries a serine instead of proline at sequence 16, was prepared for structural and functional assessment for human CypA. Soluble expression of the recombinant CypA mutant in E. coli was obtained under 30 degrees C, 180 rpm culture condition after being induced by IPTG. Ion exchange chromatography was used to purify the CypA mutant in a single step, and a high activity recovery of target protein with a high purity was achieved. Peptide fragments produced by trypsin proteolysis were applied to MALDI-TOF-MS, and searching results from the NCBI protein databank confirmed the protein attribution as well as the mutation sequence. Peptidyl-prolyl cis-trans isomerase activity was assayed for the CypA mutant using tetrapeptide substrate Suc-Ala-Ala-Pro-Phe-p-nitroanilide, and the calculated kcat/Km value was 1.5 x 106 M-1 s-1 at 10 degrees C, which was 10-fold lower than the previously reported constant for wild-type CypA. An Eyring plot was also carried out. Inhibition by cyclosporine A demonstrated that the IC50 value was 26.5 nM. Meanwhile the expected enhancement of intrinsic tryptophan fluorescence was quenched by the mutation. The effect of CypA mutant on accelerating protein refolding in vitro was investigated in ribonuclease A refolding process, and it was found that 10% slow phase could be catalyzed by CypA. The protein was subject to urea and GdmCl denaturation, where both activity and fluorescence served as structural probes. Activity recovery indicated this CypA mutant was extremely sensitive to GdmCl and the susceptibility to urea was increased. Low pH could also destabilize CypA. Furthermore the refolding of this CypA mutant itself was studied. Although the activity yield was nearly unchanged, the former proposed folding/assembly pathway might be altered. Fluorescence chart also demonstrated that the folding time was extended, and fast-folding and slow-folding analysis indicated the slow-folding rate constant presented a concentration dependence property denoting the autocatalysis of the foldase.


Subject(s)
Cyclophilin A/chemistry , Cyclophilin A/genetics , Animals , Cattle , Cyclophilin A/antagonists & inhibitors , Cyclosporine/pharmacology , Escherichia coli/genetics , Humans , Models, Molecular , Mutation , Peptide Mapping , Peptidylprolyl Isomerase/metabolism , Plasmids/genetics , Protein Conformation , Protein Denaturation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/genetics , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...