Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Environ Sci Ecotechnol ; 21: 100393, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38357479

ABSTRACT

N,N-bis(carboxymethyl)-l-glutamate (GLDA) is an eco-friendly chelating agent that effectively extracts multivalent metal ions from waste activated sludge (WAS) flocs, which could potentially alter their structure. However, the effect of GLDA on the production of volatile fatty acids (VFAs) from WAS is not well known. Here, we demonstrate that pretreatment with GLDA at a concentration of 200 mmol per kg VSS results in a significant increase of 142% in extractable extracellular polymeric substances and enhances the total VFAs yield by 64% compared to untreated samples. We reveal GLDA's capability to mobilize organic-binding multivalent metal ions within sludge flocs. Specifically, post-pretreatment analyses showed the release of 69.1 mg L-1 of Ca and 109.8 mg L-1 of Fe ions from the flocs, leading to a more relaxed floc structure and a reduced apparent activation energy (10.6 versus 20 kJ mol-1) for WAS solubilization. Molecular dynamic simulations further demonstrate GLDA's preferential binding to Fe3+ and Ca2+ over Mg2+. Our study suggests that GLDA pretreatment causes minimal disruption to reactor stability, thereby indicating the stability of microbial community composition. GLDA has emerged as a viable pretreatment agent for enhancing volatile fatty acids production from waste activated sludge.

2.
Sci Total Environ ; 920: 171033, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369164

ABSTRACT

Wastewater treatment plants (WWTPs) contribute significantly to the control of pollution in water. However, they are significant energy consumers. Identifying the factors influencing energy consumption is crucial for enhancing the energy efficiency of WWTPs. To address this, the unit energy consumption (UEC) of WWTPs was predicted using machine learning models. In order to accurately evaluate WWTPs' energy utilization efficiency, a comprehensive energy evaluation indicator, UEC (kWh/kg TODremoved) was utilized in this study. Among the prediction models, the eXtreme Gradient Boosting (XGBoost) achieves the highest prediction accuracy. SHapley Additive exPlanations (SHAP) was adopted as the model explanation system, and the results revealed that UEC was negatively affected by TN concentration, which was the most influential factor. The stoichiometry-based model calculation result indicates that the nitrification consumes average 77 % of the overall oxygen demand. SHAP analysis illustrated that the UEC of main technologies decreases with increasing influential factors. Partial dependence plot (PDP) compared average UEC of these technologies and SBR consumed the least amount of energy. The research also indicated that low influent TN concentration is the main problem in China. Consequently, it is imperative to exert efforts in ensuring the influent TN concentration while simultaneously making appropriate adjustments to the treatment process. This study provides valuable implications and methods for retrofitting and upgrading WWTPs.

3.
Appl Environ Microbiol ; 90(2): e0145123, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38224621

ABSTRACT

Adding trace calcium peroxide and magnetite into a semi-continuous digester is a new method to effectively improve the anaerobic digestion of food waste. However, the microbial mechanism in this system has not been fully explored. Metaproteomics further revealed that the most active and significantly regulated genus u_p_Chloroflexi had formed a good cooperative relationship with Methanomicrobiales and Methanothrix in the system. u_p_Chloroflexi decomposed more organic compounds into CO2, acetate, amino acids, and other substances by alternating between short aerobic-anaerobic respiration. It perceived and adapted to the surrounding environment by producing biofilm, extracellular enzymes, and accelerating substrate transport, formed a respiratory barrier, and enhanced iron transport capacity by using highly expressed cytochrome C. The methanogens formed reactive oxygen species scavengers and reduced iron transport to prevent oxidative damage. This study provides new insight for improving the efficiency of anaerobic digestion of food waste and identifying key microorganisms and their regulated functional proteins in the calcium peroxide-magnetite digestion system.IMPORTANCEPrevious study has found that the combination of calcium peroxide and magnetite has a good promoting effect on the anaerobic digestion process of food waste. Through multiple omics approaches, information such as microbial population structure and changes in metabolites can be further analyzed. This study can help researchers gain a deeper understanding of the digestion pathway of food waste under the combined action of calcium peroxide and magnetite, further elucidate the impact mechanisms of calcium peroxide and magnetite at the microbial level, and provide theoretical guidance to improve the efficiency and stability of anaerobic digestion of food waste, as well as reduce operational costs. This research contributes to improving energy recovery efficiency, promoting sustainable management and development of food waste, and is of great significance to environmental protection.


Subject(s)
Peroxides , Refuse Disposal , Anaerobiosis , Food , Food Loss and Waste , Ferrosoferric Oxide , Bioreactors , Iron , Methane , Sewage , Digestion
4.
Sci Total Environ ; 912: 169185, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38092219

ABSTRACT

Conversion of waste activated sludge (WAS) to methane by anaerobic digestion (AD) is often limited by the slow rate of hydrolysis, and the presence of metal ions in sludge is regarded as a critical factor hindering sludge hydrolysis. This study developed a novel strategy to remove Fe from WAS by using ascorbic acid (VC) as a reducing agent under acidic conditions. The feasibility of reduction pretreatment in improving methane production of AD and its intrinsic mechanism were investigated. Results indicate that, under VC doses of 100 mmol/L and pH of 3.50, pretreatment removed 47.60 % of Fe, 59.88 % of Ca, and 51.86 % of Mg contained in the sludge. The removal of metal ions facilitated the disruption of sludge flocculation structure and extracellular polymeric substance (EPS) layers, leading to a 14.78 % increase in cell lysis and a decrease in fractal dimension values to 2.08. Batch AD experiments showed that VC pretreatment improved methane production, with an optimized net methane yield of 190.22 mL/g·VS, an increase of 134.75 % compared to raw WAS. The pretreatment affected the interfacial interaction energy of the sludge, leading to a transformation in the sludge surfaces from hydrophilic to hydrophobic, reducing the interaction between sludge molecules and increasing the number of binding sites available for enzymatic reactions. According to a study of microbial communities, it was found that VC pretreatment caused an increase in the presence of essential functional microbes responsible for hydrolysis, acidification, and methanation. This increase in acetoclastic and hydrogenotrophic methanogens resulted in a substantial enhancement in methane production. These results can be used to develop better pretreatment methods to enhance AD performance.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anaerobiosis , Sewage/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Metals , Methane/metabolism , Ions , Bioreactors
5.
Bioresour Technol ; 388: 129769, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722541

ABSTRACT

The study investigated the effectiveness of magnetite and potassium ions (K+) in enhancing anaerobic digestion of high salinity food waste. Results indicated that both magnetite and K+ improved anaerobic digestion in high-salt environments, and their combination yielded even better results. The combination of magnetite and K+ promoted microorganism activity, and resulted in increased abundance of DMER64, Halobacteria and Methanosaeta. Metabolomic analysis revealed that magnetite mainly influenced quorum sensing, while K+ mainly stimulated the synthesis of compatible solutes, aiding in maintaining osmotic balance. The combined additives regulated pathways such as ATP binding cassette transport, methane metabolism, and inhibitory substance metabolism, enabling cells to resist environmental stress and maintain normal metabolic activity. Overall, this study demonstrated the potential of magnetite and K+ to enhance food waste anaerobic digestion in high salt conditions and provided valuable insights into the molecular mechanism.

6.
Water Res ; 241: 120167, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37290195

ABSTRACT

Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability. It quickly adapted to thermal stimulation and increased the specific methane production from 359 mL CH4/g·VS to 439 mL CH4/g·VS, which was also higher than 317 mL CH4/g·VS from single-stage thermophilic anaerobic digestion. Further exploration of the mechanism of STA using metagenomic and metaproteomic analysis revealed enhanced activity of key enzymes. The main metabolic pathway was up-regulated, while the dominant bacteria were concentrated, and the multifunctional Methanosarcina was enriched. These results indicate that STA optimized organic metabolism patterns, comprehensively promoted methane production pathways, and formed various energy conservation mechanisms. Further, the system's limited heating avoided adverse effects from thermal stimulation, and activated enzyme activity and heat shock proteins through circulating slurries, which improved the metabolic process, showing great application potential.


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Rivers , Bioreactors , Methane
7.
Environ Res ; 231(Pt 1): 116109, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37178751

ABSTRACT

The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Carbon , Bacteria
8.
Environ Res ; 227: 115779, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36967003

ABSTRACT

Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.


Subject(s)
Graphite , Refuse Disposal , Ferrosoferric Oxide , Anaerobiosis , Food , Charcoal , Salt Tolerance , Metagenomics , Bioreactors , Methane , Sewage
9.
Chemosphere ; 320: 138083, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754309

ABSTRACT

Medium chain fatty acids (MCFAs) production is a promising method for resource recovery from organic wastes. In this study, the microbial community structure shift along the long-term acclimation experiment and the concomitant effect of H2 level on chain elongation performance was investigated. Chain elongation microbiome could be rapidly acclimated from traditional anaerobic fermentation consortia. Genera Caproiciproducens, Clostridium sensu stricto 12, Rummeliibacillus and Oscillibacter was found to be dominant during the operation. The H2 was accumulated in the headspace by increasing the ethanol input, which inhibited oxidation of caproate and butyrate immediately, while its inhibition effect on chain elongation was delayed. H2 level in the headspace was positively correlated to the MCFAs production related bacteria. However, too much H2 accumulated might be suppressive for MCFAs production in the long term. It might result from the thermodynamic barrier for discarding excess reducing equivalents under high H2 level, which further gave rise to ethanol accumulation in this system.


Subject(s)
Ethanol , Microbiota , Fermentation , Anaerobiosis , Fatty Acids , Acetates , Bioreactors
10.
Environ Res ; 221: 115324, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36669585

ABSTRACT

Chain elongation is a promising technology for production of medium-chain fatty acids (MCFAs). Granular activated carbon (GAC) is commonly used in anaerobic fermentation. Low level CHCl3 can inhibit methanogenesis and homoacetogenesis at the same time. However, the effect of them on chain elongation performance with highly enriched consortia and simple substrate (i.e., ethanol and acetate) was still unclear. Hence, the effects of CHCl3 and on MCFAs production and the microbial community was studied here. CHCl3 displayed fatal effect on chain elongation system when its concentration was higher than 0.1% v/v. 0.05% v/v CHCl3 was enough to inhibit homoacetogens and further decreased the caproate production efficiency without altering the core bacteria tremendously. GAC was found to be adverse for chain elongation with simple substrate (i.e., ethanol and acetate) and highly enriched microbial consortia dominated by Clostridium sensu stricto, less than 20% electrons were finally distributed in caproate. It might be attributed to other electron consuming activities induced by GAC.


Subject(s)
Caproates , Ethanol , Chloroform , Charcoal , Fermentation , Acetates , Fatty Acids , Bioreactors
11.
Sci Total Environ ; 858(Pt 1): 159747, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309289

ABSTRACT

DNA methylation is one potential mechanism for the effects of gestational exposure to perfluoroalkyl substances (PFASs) on fetal growth. We investigated 180 pregnant women who participated in a cohort study conducted in Tangshan City, Northern China, and determined the concentrations of 11 PFASs and the methylation of two genes related to fetal growth [insulin-like growth factor 2 (IGF2) and nuclear receptor subfamily 3 group C member 1 (NR3C1)] and one surrogate marker for global methylation [long interspersed nuclear element-1 (LINE-1)] in placenta tissue. Multiple linear regression analysis was performed to examine the associations of log transformed PFASs with the DNA methylation and birth size. Weighted quantile sum regression was used to determine the mixture effect of PFASs. After adjusting for potential confounders, perfluorooctane sulfonate (PFOS) was negatively associated with the overall methylation of LINE-1. PFASs mixture was negatively associated with the methylation of all CpG loci of LINE-1 and overall methylation of NR3C1. Perfluorootanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and the PFASs mixture showed negative associations with head circumference. After stratified by newborns' sex, PFOA, PFNA and the PFASs mixture was negatively associated with overall methylation of LINE-1 only in the male subgroup and the methylation of all CpG loci of LINE-1 was negatively associated with ponderal index only in the female subgroup. The interaction of newborns' sex with PFOS and PFOA on overall methylation of IGF2 was statistically significant and so was the interaction of sex with PFOS on overall methylation of LINE-1. These findings suggested that intrauterine exposure to PFASs affected placental DNA methylation and reduced fetal growth, which might be modified by sex.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Male , Infant, Newborn , Humans , Pregnancy , Fluorocarbons/toxicity , DNA Methylation , Cohort Studies , Environmental Pollutants/toxicity , Placenta , Alkanesulfonic Acids/toxicity
12.
ACS Omega ; 7(24): 20634-20643, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35755378

ABSTRACT

Electrodeionization (EDI) is used to recover ammonia from wastewater as a fuel, but how its performance for ammonia recovery is affected by the supporting electrolyte is not very clear. This study involved experimental tests and theoretical calculations on NH3 recovery, NH4 + permeation, and NH4 + and Na+ interacting with the functional groups in a cation exchange membrane (CEM) using Na2SO4 as the supporting electrolyte. The results demonstrated that a low concentration (≤0.250 mol L-1 of Na2SO4) was conducive to NH4 + permeation, while the a concentration (0.750 mol L-1 of Na2SO4) hindered NH4 + permeation. A maximum recovery efficiency of ammonia of 80.00%, a current efficiency of 70.10%, and an energy balance ratio of 0.66 were obtained at 0.250 mol L-1 of Na2SO4. Numerical results indicated that an increase in Na2SO4 concentration caused severe concentration polarization that resisted NH4 + migration in the CEM. The DFT results demonstrated that competitive adsorption of Na+ to the CEM hindered NH4 + migration. The weaker interacting force between NH4 + and the sulfonate functional group (-SOH3) in comparison to that between Na+ and -SOH3 might be related to the geometric and orientation effects, which generated an additional energy barrier for NH4 + transport. Therefore, this study suggests that the supporting electrolyte concentration should be matched with that of the desalted ions.

13.
Sci Total Environ ; 805: 150360, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818773

ABSTRACT

Previous studies have suggested that perfluoroalkyl substances (PFASs) can act as endocrine disruptors, but few studies have investigated the effects of serum PFASs on estrogen homeostasis during pregnancy. The present study included 557 pregnant women in Tangshan City, North China, and determined 11 serum PFASs in the early term of pregnancy and three typical estrogens (estrone (E1), estradiol (E2) and estriol (E3)) in the early (n = 557), middle (n = 339), and late (n = 286) terms of pregnancy. Sociodemographic factors and diet information were obtained by structured questionnaires. After adjusting for potential confounders, multiple linear regression model demonstrated negative associations of natural logarithmic transformed serum perfluoroundecanoic acid (Ln PFUdA) with Ln E1and Ln E3 in the early term of pregnancy with ß coefficients of -0.060 (95% confidence interval (CI): -0.101 to -0.019) and -0.041 (95% CI: -0.070 to -0.011), respectively. Ln perfluorodecanoic acid (PFDA) was negatively associated with averaged E1 in the early and middle (EM) terms of pregnancy with a ß coefficient of -0.205 (95% CI: -0.357 to -0.053). Ln perfluorononanoic acid (PFNA) tended to be negatively associated with E2 in the late term of pregnancy with a ß coefficient of -0.134 (95% CI: -0.253 to -0.016) although p-value was slightly greater than 0.05 after false discovery rate (FDR) correction. Mixed effect model found that serum PFDA was negatively associated with E1 (ß = -0.123, 95% CI: -0.235 to -0.012) during the entire pregnancy. These findings suggested that exposure to PFASs disturbed estrogen homeostasis in pregnant women and the effects varied with the terms of pregnancy.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Estrogens , Female , Homeostasis , Humans , Pregnancy , Pregnant Women
14.
ACS Omega ; 6(42): 28150-28161, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723013

ABSTRACT

Indentation tests and numerical simulations were conducted to investigate the effects of the indenter parameters (diameter and cone angle) and the relative density of Aluminum (Al) foams on the deformation mechanism of closed-cell Al foams, load response, and energy-absorbing capability. The results demonstrated that the densification occurred below the indenter, and cell tearing and bending occurred on both sides of the indenter, while the lateral plastic deformation insignificantly took place during the indentation tests. The load response and absorbed energy per unit volume dramatically increased with the cone angle of the indenter and the relative density of Al foams. However, the load response slightly increased but the absorbed energy per unit volume linearly decreased with the diameter of the indenter. Interestingly, the energy-absorption efficiency was independent of the diameter and cone angle of the indenter, and the relative density of Al foams as well. Our results suggest the indentation tests are recommended approaches to reflect the mechanical properties of closed-cell Al foams.

15.
Environ Sci Pollut Res Int ; 28(10): 12546-12554, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33083951

ABSTRACT

Lab studies have suggested that exposure to Bisphenol A (BPA) could disturb glucose homeostasis, but epidemiologic studies are limited and show inconsistent results for pregnant women. For this, 535 pregnant women were selected from a pregnant women cohort established in Tangshan City in North China between 2013 and 2014. Serum concentrations of BPA were measured in the early term of pregnancy, and fasting glucose and insulin levels were repeatedly measured in each of three terms of pregnancy (early, middle, and late). Gestational diabetes mellitus (GDM) were examined by Oral Glucose Tolerance Test (OGTT) in the middle and late terms of pregnancy. BPA was detected in 97.5% of pregnant women with a median of 6.50 ng/ml. Natural log-transformed BPA (Ln BPA) was positively associated with fasting glucose level (ß (95% CI): 0.038 (0.015~0.061)), fasting insulin level (0.195 (0.069~0.321)), and homeostasis model insulin resistance index (HOMA-IR) (0.226 (0.087~0.364)) in the middle term of pregnancy by multiple linear regression model after adjusting for potential confounders. After serum BPA levels were divided into three groups (low, middle, and high), BPA showed a positive dose-response relationship with blood glucose, insulin, and HOMA-IR in the middle term of pregnancy. Increased BPA concentration tended to increase the RR of GDM although not statistically significant (risk ratio: 2.51 (95% CI: 0.68~9.30) for high vs low tertile of BPA concentrations). These findings suggested that exposure to BPA might affect glucose homeostasis and the middle term of pregnancy was a potentially sensitive period.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Benzhydryl Compounds , Blood Glucose , China , Female , Homeostasis , Humans , Phenols , Pregnancy , Pregnant Women , Prospective Studies
16.
Chemosphere ; 273: 128566, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33097232

ABSTRACT

Laboratory and epidemiologic studies suggested that exposure to perfluoroalkyl substances (PFASs) could affect lipid metabolisms, but data remain limited for pregnant women. A total of 436 pregnant women were selected in Tangshan City, North China. Serum levels of 11 PFASs were determined in the early term of pregnancy. Four lipids (total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)) were measured in the late term of pregnancy. Of 11 PFASs, seven had a detection rate of greater than 70%. After adjusting for potential confounders, natural log-transformed perfluororohexanesulfonic acid (ln PFHxS) was positively associated with TC (ß: 0.184, 95% CI: 0.045-0.321), HDL (ß: 0.040, 95% CI: 0.001-0.083), and LDL (ß: 0.091, 95% CI: 0.001-0.185). Ln perfluoroundecanoic acid (PFUdA) was positively associated with HDL (ß: 0.021, 95% CI: 0.001-0.044), while Ln perfluorodecanoic acid (PFDA) was negatively associated with LDL (ß: -0.053, 95% CI: -0.098∼-0.009) and ln perfluorootanoic acid (PFOA) was negatively associated with LDL/HDL (ß: -0.042, 95% CI: -0.075∼-0.009). In principal component analysis, the component with a large loading of 31.3% for PFOA, perfluorononanoic acid (PFNA), PFDA and PFUdA showed a negative association with LDL/HDL. After serum concentrations of PFASs were categorized into quartiles, a higher level of TC was seen in the second quartile of PFOA or PFNA than the first quartile, but a lower LDL/HDL ratio was seen in the fourth quartile of PFOA, PFUdA or PFDA. These results suggested that exposure to PFASs has a potential to influence lipid metabolisms in pregnant women.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , China , Cities , Female , Humans , Lipid Metabolism , Pregnancy , Pregnant Women
17.
Food Sci Nutr ; 8(7): 3893-3899, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724650

ABSTRACT

The dietary phytosterols have been demonstrated to modulate CD4+ T-cell polarization in cells, animals, and humans. However, T helper (Th)1/Th2 dichotomy has rarely been correlated with phytosterols during pregnancy. The present study investigated associations between the serum cytokines and serum phytosterols in 100 pregnant women at 34- to 37-week gestation and their offspring. The results showed that serum concentrations of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and total Th1 cytokines were positively associated with serum ß-sitosterol level, adjusting for age, BMI, and serum cholesterol. Serum IFN-γ and total Th1 cytokine concentrations positively correlated with total phytosterol concentration, controlling age, BMI, and serum cholesterol. Moreover, none of the cytokines measured correlated with phytosterol concentration in the newborns. Our results show that serum Th1 cytokine concentrations, but not Th2 levels, are positively associated with serum phytosterols in pregnant women. These findings implicate that phytosterols modulate Th1/Th2 balance by inducing Th1 secretions in pregnant women.

18.
Microorganisms ; 8(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570720

ABSTRACT

Single-stage nitrite shunt denitrification (through nitrite rather than nitrate) with low dissolved oxygen (DO) supply is a better alternative in terms of energy-efficiency, short-footprint, and low C/N-ratio requirement. This study investigates the optimal DO level with temperature effect, with saline sewage at the fixed hydraulic and solids retention times of 8 h and 8 d, respectively. Moreover, 16S rRNA gene sequencing analysis corresponding with total nitrogen (TN) and chemical oxygen demand (COD) removals in each operating condition were performed. Results showed that DO of 0.3 mg/L at 20 °C achieved over 60.7% and over 97.9% of TN and COD removal, respectively, suggesting that such condition achieved effective nitrite-oxidizing bacteria inhibition and efficient denitrification. An unexpected finding was that sulfur-reducing Haematobacter and nitrogen-fixing Geofilum and Shinella were highly abundant with the copredominance of ammonia-oxidizing Comamonas and Nitrosomonas, nitrite-oxidizing Limnohabitans, and denitrifying Simplicispira, Castellaniella, and Nitratireductor. Further, canonical correspondence analysis (CCA) with respect to the operating conditions associated with phenotype prediction via R-based tool Tax4Fun was performed for a preliminary diagnosis of microbial functionality. The effects of DO, temperature, nitrite, and nitrate in various extents toward each predominant microbe were discussed. Collectively, DO is likely pivotal in single-stage nitrite shunt denitrification, as well as microbial communities, for energy-efficient saline sewage treatment.

19.
Environ Res ; 186: 109521, 2020 07.
Article in English | MEDLINE | ID: mdl-32335429

ABSTRACT

The high-level ammonium-nitrogen (NH4+-N) is a contaminant for aqueous environment but a potential hydrogen fuel. This study investigated an approach of increasing ammonia recovery via adding sodium sulfate of 0-1.5 M to prevent from nitrogen generation. The results of experiment tests, electrochemical analysis and MD simulation demonstrated that the added Na2SO4 assisted ammonium transport inhibited nitrogen gas generation in a certain concentration range. In electric double layer (EDL), with Na2SO4 concentration increasing, both the migration velocities of NH4+ and Na+ are accelerated for Na2SO4 of 0-0.25 M, whereas they are decelerated for concentrate Na2SO4 that 0.5 M). A thick layer formed by Na+ that imposed a fierce competitive adsorption blocked the migration of NH4+ and the transportation of electrons. The decrease of electrons and the accumulation of water molecules caused the potential drop in the EDL. 0.25 M Na2SO4 was the optimal concentration from the aspect of ion transports. The results obtained in this study can allow the manipulation of EDI capacity optimization.


Subject(s)
Ammonia , Ammonium Compounds , Ammonia/analysis , Ammonium Compounds/analysis , Electrodes , Nitrogen/analysis , Sulfates , Wastewater
20.
Environ Res ; 185: 109386, 2020 06.
Article in English | MEDLINE | ID: mdl-32222632

ABSTRACT

Antibiotic contamination in drinking water sources has been increasingly prominent in recent years. The water quality in the Chongqing area is not only essential for the local people but also is crucial for the downstream of Yangzi River. To understand the level of antibiotic contamination in the large-scale drinking water sources, this study measured antibiotic residues in nine large-scale drinking water sources (five urban drinking water sources and four township drinking water sources) in Chongqing area of the Yangtze River. Results demonstrated that eight antibiotics of three categories in total were detected, including sulfonamide metformin (SMX), sulfonamide metformin (SMZ), erythromycin (ERM), Roxithromycin (ROM), Tylosin (TYL), Lincomycin (LIN), Chloramphenicol (CAP), and Florfenicol (FF). The mass concentration of antibiotic residues in five urban drinking water sources ranged from 13.9 to 76.6 ng/L, with an average of 46.4 ng/L, and that in four township drinking water sources ranged from 20.6 to 188.1 ng/L, with an average of 88.45 ng/L. The mass concentrations of antibiotic residues in Chongqing area were much lower than those in other cities. Antibiotics posed the maximum risk with a value of 0.005 for 0-3 months of the infant. The risk quotients of antibiotic residues in all water sources were much lower than 1 and thus did not pose a direct threat to human health.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , China , Cities , Drinking Water/analysis , Environmental Monitoring , Humans , Risk Assessment , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...