Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(32): 9067-9075, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33560828

ABSTRACT

Enzymatic esterification of resveratrol is crucial for its potential application in lipophilic foods and drugs. However, the poor activity of the free enzyme hinders the reaction. In this work, the highly efficient enzymatic synthesis of resveratrol ester derivatives was achieved by immobilized lipase on hydrophobic modified hollow mesoporous silicon spheres (HMSS-C8). We preliminarily explored the use of Candida sp. 99-125 lipase (CSL) for the acylation of resveratrol, with a regioselectivity toward 3-OH- over 4'-OH-acylation. HMSS-C8 provided ideal accommodation for CSL with a loading capacity of up to 652 mg/g. The catalytic efficiency of CSL@HMSS-C8 was 15 times higher than that of free CSL, and the conversion of resveratrol reached 98.7% within only 2 h, which is the fastest value recorded in the current literature. After 10 cycles, the conversion remained up to 86.3%. Benefiting from better lipid solubility, the relative oxidation stability index values of oil containing monoester derivatives were 43.1%-68.8% and 23.9%-33.2% higher than that of refined oil and oil containing resveratrol, respectively. This research provides a new pathway for efficient enzymatic synthesis of resveratrol ester derivatives and demonstrates the potential application of resveratrol monoester derivatives as a group of excellent lipid-soluble antioxidants.


Subject(s)
Esters , Lipase , Enzymes, Immobilized/metabolism , Esterification , Lipase/metabolism , Resveratrol , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...