Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(3): 2767-2775, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28050901

ABSTRACT

Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W1-, which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

2.
Opt Express ; 24(6): A674-81, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136885

ABSTRACT

Flexible organic light-emitting diodes (OLEDs) are emerging as a leading technology for rollable and foldable display applications. For the development of high-performance flexible OLEDs on plastic substrate, we report a transparent nanocomposite electrode with superior mechanical, electrical, and optical properties, which is realized by integrating the nanoimprinted quasi-random photonic structures into the ultrathin metal/dielectric stack to collectively optimize the electrical conduction and light outcoupling capabilities. The resulting flexible OLEDs with green emission yield the enhanced device efficiency, reaching the maximum external quantum efficiency of 43.7% and luminous efficiency of 154.9 cd/A, respectively.

3.
ACS Nano ; 10(1): 1625-32, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26687488

ABSTRACT

Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

4.
ACS Appl Mater Interfaces ; 6(17): 15604-9, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25141159

ABSTRACT

A comprehensive understanding of the energy-level alignment at the organic heterojunction interfaces is of paramount importance to optimize the performance of organic solar cells (OSCs). Here, the detailed electronic structures of organic interconnectors, consisting of cesium fluoride-doped 4,7-diphenyl-1,10-phenanthroline and hexaazatriphenylene-hexacarbonitrile (HATCN), have been investigated via in situ photoemission spectroscopy, and their impact on the charge recombination process in tandem OSCs has been identified. The experimental determination shows that the HATCN interlayer plays a significant role in the interface energetics with a dramatic decrease in the reverse built-in potential for electrons and holes from stacked subcells, which is beneficial to the charge recombination between HATCN and the adjacent layer. In accordance with the energy-level alignments, the open-circuit voltage of tandem OSC incorporating a HATCN-based interconnector is almost 2 times that of a single-cell OSC, revealing the effectiveness of the HATCN-based interconnectors in tandem organic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...