Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Crit Care ; 27(1): 493, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102705

ABSTRACT

BACKGROUND: Intensive care unit-acquired weakness (ICU-AW) is a prevalent and severe issue among ICU patients. Resistance training and beta-hydroxy-beta-methylbutyrate (HMB) intervention have demonstrated the potential to enhance muscle function in patients with sarcopenia and in older adults. The purpose of this study was to determine whether resistance training and/or HMB administration would improve physical function, muscle strength, and quality of life in medical ICU patients. METHODS: In this multicentre, four-arm, single-blind randomised control trial, a total of 112 adult patients with internal medical diagnoses admitted to the ICU were enrolled. These participants were then randomly assigned to one of four treatment groups: the resistance training group received protocol-based multilevel resistance exercise, the HMB group received 3 g/day of HMBCa, combination group and control groups received standard care, from the ICU to the general ward until discharge. The primary outcomes assessed at discharge included six-minute walking distance (6MWD) and short physical performance battery (SPPB). Secondary outcomes measured included muscle mass, MRC score, grip strength, and health reports quality of life at different time points. Data analysis was performed using a generalised linear mixed model, adhering to the principles of intention-to-treat analysis. RESULTS: Resistance training and combination treatment groups exhibited significant increases in SPPB scores (3.848 and 2.832 points, respectively) compared to the control group and substantial improvements in 6WMD (99.768 and 88.577 m, respectively) (all with P < 0.01). However, no significant changes were observed in the HMB group. Muscle strength, as indicated by MRC and grip strength tests conducted at both ICU and hospital discharge, showed statistically significant improvements in the resistance training and combination groups (P < 0.05). Nevertheless, no significant differences were found between the treatment groups and usual care in terms of 60-day mortality, prevalence of ICU-AW, muscle mass, quality of life, or other functional aspects. CONCLUSIONS: Resistance training with or without beta-hydroxy-beta-methylbutyrate during the entire hospitalisation intervention improves physical function and muscle strength in medical ICU patients, but muscle mass, quality of life, and 60-day mortality were unaffected. TRIAL REGISTRATION: ChiCTR2200057685 was registered on March 15th, 2022.


Subject(s)
Resistance Training , Humans , Dietary Supplements , Intensive Care Units , Muscle Strength , Muscle, Skeletal/physiology , Patient Discharge , Quality of Life , Single-Blind Method , Adult
2.
Med Image Anal ; 89: 102890, 2023 10.
Article in English | MEDLINE | ID: mdl-37467642

ABSTRACT

Recently, convolutional neural networks (CNNs) directly using whole slide images (WSIs) for tumor diagnosis and analysis have attracted considerable attention, because they only utilize the slide-level label for model training without any additional annotations. However, it is still a challenging task to directly handle gigapixel WSIs, due to the billions of pixels and intra-variations in each WSI. To overcome this problem, in this paper, we propose a novel end-to-end interpretable deep MIL framework for WSI analysis, by using a two-branch deep neural network and a multi-scale representation attention mechanism to directly extract features from all patches of each WSI. Specifically, we first divide each WSI into bag-, patch- and cell-level images, and then assign the slide-level label to its corresponding bag-level images, so that WSI classification becomes a MIL problem. Additionally, we design a novel multi-scale representation attention mechanism, and embed it into a two-branch deep network to simultaneously mine the bag with a correct label, the significant patches and their cell-level information. Extensive experiments demonstrate the superior performance of the proposed framework over recent state-of-the-art methods, in term of classification accuracy and model interpretability. All source codes are released at: https://github.com/xhangchen/MRAN/.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Software
4.
Front Genome Ed ; 2: 607982, 2020.
Article in English | MEDLINE | ID: mdl-34713232

ABSTRACT

CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the CRISPR/Cas9 cassette with a unit that activates anthocyanin biosynthesis, providing a visible marker for detecting the presence of transgenes. The anthocyanin-marker assisted CRISPR (AAC) technology enables us to identify transgenic events even at calli stage, to select transformants with elevated Cas9 expression, and to identify transgene-free plants in the field. We used the AAC technology to edit LAZY1 and G1 and successfully generated many transgene-free and target gene-edited plants at T1 generation. The AAC technology greatly reduced the labor, time, and costs needed for editing target genes in rice.

6.
Nat Biotechnol ; 37(4): 445-450, 2019 04.
Article in English | MEDLINE | ID: mdl-30886437

ABSTRACT

One of the main obstacles to gene replacement in plants is efficient delivery of a donor repair template (DRT) into the nucleus for homology-directed DNA repair (HDR) of double-stranded DNA breaks. Production of RNA templates in vivo for transcript-templated HDR (TT-HDR) could overcome this problem, but primary transcripts are often processed and transported to the cytosol, rendering them unavailable for HDR. We show that coupling CRISPR-Cpf1 (CRISPR from Prevotella and Francisella 1) to a CRISPR RNA (crRNA) array flanked with ribozymes, along with a DRT flanked with either ribozymes or crRNA targets, produces primary transcripts that self-process to release the crRNAs and DRT inside the nucleus. We replaced the rice acetolactate synthase gene (ALS) with a mutated version using a DNA-free ribonucleoprotein complex that contains the recombinant Cpf1, crRNAs, and DRT transcripts. We also produced stable lines with two desired mutations in the ALS gene using TT-HDR.


Subject(s)
Gene Targeting/methods , Genes, Plant , Homologous Recombination , Oryza/genetics , Acetolactate Synthase/genetics , Base Sequence , Biotechnology , CRISPR-Cas Systems , DNA, Plant/genetics , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , RNA, Plant/genetics , Recombinant Proteins/genetics , Recombinational DNA Repair , Templates, Genetic
8.
Int J Biomed Imaging ; 2011: 843924, 2011.
Article in English | MEDLINE | ID: mdl-21922018

ABSTRACT

Algebraic reconstruction techniques require about half the number of projections as that of Fourier backprojection methods, which makes these methods safer in terms of required radiation dose. Algebraic reconstruction technique (ART) and its variant OS-SART (ordered subset simultaneous ART) are techniques that provide faster convergence with comparatively good image quality. However, the prohibitively long processing time of these techniques prevents their adoption in commercial CT machines. Parallel computing is one solution to this problem. With the advent of heterogeneous multicore architectures that exploit data parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this paper, we map OS-SART on cell broadband engine (Cell BE). We effectively use the architectural features of Cell BE to provide an efficient mapping. The Cell BE consists of one powerPC processor element (PPE) and eight SIMD coprocessors known as synergetic processor elements (SPEs). The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and number of DMA transfers between main memory and local memory, that impact the performance of the algorithm.

9.
Shanghai Kou Qiang Yi Xue ; 17(4): 383-5, 2008 Aug.
Article in Chinese | MEDLINE | ID: mdl-18784878

ABSTRACT

PURPOSE: To evaluate the effect of casting metal full crown made by Bonn method to restore abutment of removable partial denture. METHODS: The first step was to restore the anatomical shape of 48 abutment residual crowns, then casting metal full crown was made by Bonn method. After the abutment was restored, removable dentures were mounted, and regular clinical examination was performed to evaluate the short-term result. RESULTS: After three to six months, 48 residual teeth were restored successfully by Bonn method, the results were satisfactory, one was found to have gingivitis. CONCLUSIONS: When RPD-based dental crown is used to repair abutment defects, Bonn method is simple and effective.


Subject(s)
Crowns , Denture, Partial, Removable , Dental Abutments , Humans , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...