Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Article in English | MEDLINE | ID: mdl-38826132

ABSTRACT

Despite the tremendous progress in cancer research over the past few decades, effective therapeutic strategies are still urgently needed. Accumulating evidence suggests that immune checkpoints are the cause of tumor immune escape. PD-1/PD-L1 are among them. Posttranslational modification is the most critical step for protein function, and the regulation of PD-L1 by small molecules through posttranslational modification is highly valuable. In this review, we discuss the mechanisms of tumor cell immune escape and several posttranslational modifications associated with PD-L1 and describe examples in which small molecules can regulate PD-L1 through posttranslational modifications. Herein, we propose that the use of small molecule compounds that act by inhibiting PD-L1 through posttranslational modifications is a promising therapeutic approach with the potential to improve clinical outcomes for cancer patients.

2.
Sci Rep ; 14(1): 12805, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834642

ABSTRACT

The cast thin sections of tight oil reservoirs contain important parameters such as rock mineral composition and content, porosity, permeability and stratigraphic characteristics, which are of great significance for reservoir evaluation. The use of deep learning technology for intelligent identification of thin section images is a development trend of mineral identification. However, the difficulty of making cast thin sections, the complexity of the making process and the high cost of thin section annotation have led to a lack of cast thin section images, which cannot meet the training requirements of deep learning image recognition models. In order to increase the sample size and improve the training effect of deep learning model, we proposed a generation and annotation method of thin section images of tight oil reservoir based on deep learning, by taking Fuyu reservoir in Sanzhao Sag as the target area. Firstly, the Augmentor strategy space was used to preliminarily augment the original images while preserving the original image features to meet the requirements of the model. Secondly, the category attention mechanism was added to the original StyleGAN network to avoid the influence of the uneven number of components in thin sections on the quality of the generated images. Then, the SALM annotation module was designed to achieve semi-automatic annotation of the generated images. Finally, experiments on image sharpness, distortion, standard accuracy and annotation efficiency were designed to verify the advantages of the method in image quality and annotation efficiency.

3.
J Am Soc Mass Spectrom ; 35(6): 1310-1319, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780475

ABSTRACT

The accumulation of amyloid beta (Aß1-42) results in neurotoxicity and is strongly related to neurodegenerative disorders, especially Alzheimer's disease (AD), but the underlying molecular mechanism is still poorly understood. Therefore, there is an urgent need for researchers to discover the proteins that interact with Aß1-42 to determine the molecular basis. Previously, we developed peptide-ligand-induced changes in the abundance of proTeinS (PACTS)-assisted thermal proteome profiling (TPP) to identify proteins that interact with peptide ligands. In the present study, we applied this technique to analyze clinical samples to identify Aß1-42-interacting proteins. We detected 115 proteins that interact with Aß1-42 in human frontal lobe tissue. Pathway enrichment analysis revealed that the differentially expressed proteins were involved mainly in neurodegenerative diseases. Further orthogonal validation revealed that Aß1-42 interacted with the AD-associated protein mitogen-activated protein kinase 3 (MAPK3), and knockdown of the Aß1-42 amyloid precursor protein (APP) inhibited the MAPK signaling pathway, suggesting potential functional roles for Aß1-42 in interacting with MAPK3. Overall, this study demonstrated the application of the PACTS-TPP in clinical samples and provided a valuable data source for research on neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Proteomics , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/analysis , Proteomics/methods , Alzheimer Disease/metabolism , Proteome/analysis , Proteome/metabolism , Frontal Lobe/metabolism , Frontal Lobe/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/chemistry , Protein Binding
4.
Chem Commun (Camb) ; 60(46): 5944-5947, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38764375

ABSTRACT

Simultaneous and multiplexed exosome protein profiling via an orthogonal CRISPR-Cas platform was achieved in this work. Aptamers were recruited to translate exosome surface protein information into Cas12a/Cas13a cleavage activity. The established multiplexed platform performed robustly with biological matrixes and could profile exosome proteins in clinical serum samples.


Subject(s)
CRISPR-Cas Systems , Exosomes , Exosomes/chemistry , Exosomes/metabolism , CRISPR-Cas Systems/genetics , Humans , Aptamers, Nucleotide/chemistry , Phenotype
5.
Data Brief ; 54: 110465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711736

ABSTRACT

Trimethylamine-N-oxide (TMAO) is a gut-derived metabolite formed from dietary choline and l-carnitine, known to impede cholesterol metabolism and is implicated in the pathogenesis of thrombosis and atherosclerosis, contributing to the etiology of cardiovascular diseases. We present a dataset derived from an experimental study designed to elucidate the cardiotoxic effects of TMAO. This dataset encompasses echocardiographic assessments from two cohorts of mice: one subjected to a 6-week regimen of 20 mg/kg/day TMAO injections (n = 16) and a control group (n = 18). Each subject's echocardiographic dataset comprises six high-resolution TIFF images, capturing both B-type and M-mode views in standard echocardiographic planes, along with two additional M-mode images enriched with analysed cardiac functional data. Complementing these images, a CSV-formatted report details critical cardiac parameters, including heart rate, ejection fraction, and fractional shortening, among others. In a novel approach to enhance data integrity and permit tailored analyses, we provide the original output files from the echocardiography apparatus, which researchers can reprocess using dedicated analysis software. This dataset is anticipated to be instrumental in advancing our understanding of the mechanistic links between TMAO exposure and cardiac dysfunction.

6.
Lab Invest ; : 102087, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797344

ABSTRACT

Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducts an investigation into the variations in renal function and related biological oscillators. Utilizing the genetically diverse mouse models BALB/c, C57BL/6, and KM, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate the dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C, were quantified to investigate potential divergences attributable to sex and genetic lineage. Our findings reveal marked sexual dimorphism in metabolite concentrations, as well as strain-specific variances, particularly in creatinine and cystatin C levels. Through the combination of Mantel tests and Pearson's correlation coefficients, we delineated the associations between renal functional metrics and microhemodynamics, uncovering interactions in female BALB/c mice for creatinine and uric acid, and in male C57BL/6 mice for cystatin C. Histopathological examination confirmed an augmented microvascular density in females and elucidating variations in the expression of estrogen receptor ß amongst the strains. These data collectively highlight the influence of both sex and genetic constitution on renal microcirculation, providing an understanding that may inform the etiological exploration of renal ailments.

7.
Environ Pollut ; 349: 123959, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608855

ABSTRACT

The worldwide prevalence of obesity highlights the potential contribution of endocrine-disrupting chemicals (EDCs). However, common epidemiological measures such as body mass index and waist circumference may misrepresent the intricate obesity risks these chemicals pose across genders. This study delves deeper into abdominal fat by differentiating between subcutaneous and visceral regions by analyzing data from National Health and Nutrition Examination Surveys (NHANES). We particularly investigated the gender-specific associations between organophosphorus flame-retardant metabolites (mOPFRs), phthalates (mPAEs) and accumulated fat indexes from 2536 people. Aiding by Bayesian Kernel Machine Regression (BKMR), we found while co-exposure to mOPFRs and mPAEs was linked to general and abdominal obesity across the entire and gender-specific populations, a gender-specific fat distribution emerged. For women, urinary BDCPP and MBzP were linked to an increased subcutaneous fat index (SFI) [BDCPP OR: 1.12 (95% CI: 1.03-1.21), MBzP OR: 1.09 (95% CI: 1.01-1.18)], but not to visceral fat index (VFI). These metabolites had a combined linkage with SFI, with BDCPP (weighting 22.0%) and DPHP (weighting 31.0%) being the most influential in Quantile g-computation model (qgcomp) model. In men, BCEP exposure exclusively associated with the elevated VFI [OR: 1.14 (95% CI: 1.03-1.26)], a trend further highlighted in mixture models with BCEP as the predominant association. Intriguingly, only males displayed a marked correlation between these metabolites and insulin resistance in subpopulation. An attempted mediation analysis revealed that elevated C-reactive protein mediated 12.1% of the association between urinary BCEP and insulin resistance, suggesting a potential role of inflammation. In conclusion, the gender-specific fat distribution and insulin resistance that associated with mOPFRs represented the potential risk of these chemicals to man.


Subject(s)
Environmental Exposure , Insulin Resistance , Phthalic Acids , Humans , Female , Male , Phthalic Acids/metabolism , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Endocrine Disruptors/metabolism , Organophosphates/metabolism , Abdominal Fat/metabolism , Environmental Pollutants/metabolism , Esters/metabolism , Flame Retardants/metabolism , Young Adult , Nutrition Surveys , Sex Factors
8.
Int J Biol Macromol ; 268(Pt 1): 131909, 2024 May.
Article in English | MEDLINE | ID: mdl-38679251

ABSTRACT

Astaxanthin is a kind of keto-carotenes with various health benefits. However, its solubility and chemical stability are poor, which leads to low bio-availability. Microcapsules have been reported to improve the solubility, chemical stability, and bio-availability of lipophilic bioactives. Freeze-dried astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly of tertiary emulsions with maltodextrin as the filling matrix. Tertiary emulsions were fabricated by performing chitosan and sodium alginate electrostatic deposition onto soybean lecithin stabilized emulsions. 0.9 wt% of chitosan solution, 0.3 wt% of sodium alginate solution and 20 wt% of maltodextrin were optimized as the suitable concentrations. The prepared microcapsules were powders with irregular blocky structures. The astaxanthin loading was 0.56 ± 0.05 % and the encapsulation efficiency was >90 %. A slow release of astaxanthin could be observed in microcapsules promoted by the modulating of chitosan, alginate and maltodextrin. In vitro simulated digestion displayed that the microcapsules increased the bio-accessibility of astaxanthin to 69 ± 1 %. Chitosan, alginate and maltodextrin can control the digestion of microcapsules. The coating of chitosan and sodium alginate, and the filling of maltodextrin in microcapsules improved the chemical stability of astaxanthin. The constructed microcapsules were valuable to enrich scientific knowledge about improving the application of functional ingredients.


Subject(s)
Alginates , Capsules , Chitosan , Lecithins , Xanthophylls , Xanthophylls/chemistry , Alginates/chemistry , Chitosan/chemistry , Lecithins/chemistry , Polysaccharides/chemistry , Drug Compounding , Emulsions/chemistry , Drug Carriers/chemistry , Layer-by-Layer Nanoparticles
9.
aBIOTECH ; 5(1): 1-16, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576437

ABSTRACT

Di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/3) is catalysed by histone methyltransferase Set2, which plays an essential role in transcriptional regulation. Although there is a single H3K36 methyltransferase in yeast and higher eukaryotes, two H3K36 methyltransferases, Ash1 and Set2, were present in many filamentous fungi. However, their roles in H3K36 methylation and transcriptional regulation remained unclear. Combined with methods of RNA-seq and ChIP-seq, we revealed that both Ash1 and Set2 are redundantly required for the full H3K36me2/3 activity in Magnaporthe oryzae, which causes the devastating worldwide rice blast disease. Ash1 and Set2 distinguish genomic H3K36me2/3-marked regions and are differentially associated with repressed and activated transcription, respectively. Furthermore, Ash1-catalysed H3K36me2 was co-localized with H3K27me3 at the chromatin, and Ash1 was required for the enrichment and transcriptional silencing of H3K27me3-occupied genes. With the different roles of Ash1 and Set2, in H3K36me2/3 enrichment and transcriptional regulation on the stress-responsive genes, they differentially respond to various stresses in M. oryzae. Overall, we reveal a novel mechanism by which two H3K36 methyltransferases catalyze H3K36me2/3 that differentially associate with transcriptional activities and contribute to enrichment of facultative heterochromatin in eukaryotes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00127-3.

10.
Ren Fail ; 46(1): 2329249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38482598

ABSTRACT

BACKGROUND: Renal microcirculation plays a pivotal role in kidney function by maintaining structural and functional integrity, facilitating oxygen and nutrient delivery, and waste removal. However, a thorough bibliometric analysis in this area remains lacking. Therefore, we aim to provide valuable insights through a bibliometric analysis of renal microcirculation literature using the Web of Science database. METHODS: We collected renal microcirculation-related publications from the Web of Science database from January 01, 1990, to December 31, 2022. The co-authorship of authors, organizations, and countries/regions was analyzed with VOSviewer1.6.18. The co-occurrence of keywords and co-cited references were analyzed using CiteSpace6.1.R6 software to generate visualization maps. Additionally, burst detection was applied to keywords and cited references to forecast research hotspots and future trends. RESULTS: Our search yielded 7462 publications, with the American Journal of Physiology-Renal Physiology contributing the most articles. The United States, Mayo Clinic, and Lerman Lilach O emerged with the highest publication count, indicating their active collaborations. 'Type 2 diabetes' was the most significant keyword cluster, and 'diabetic kidney disease' was the largest cluster of cited references. 'Cardiovascular outcome' and 'diabetic kidney diseases' were identified as keywords in their burst period over the past three years. CONCLUSION: Our bibliometric analysis illuminates the contours of nephrology and microcirculation research, revealing a landscape ripe for challenges and the seeds of future scientific innovation. While the trends discerned from the literature emerging opportunities in diagnostic innovation, renal microcirculation research, and precision medicine interventions, their translation to clinical practice is anticipated to be a deliberate process.


Subject(s)
Diabetic Nephropathies , Kidney , Humans , Microcirculation , Bibliometrics , Databases, Factual
11.
Transl Cancer Res ; 13(2): 1114-1124, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482412

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has placed a tremendous burden on the world's healthcare systems, prompting medical professionals worldwide to diligently research and experiment with treatment methods to prevent infection and alleviate symptoms. Previous studies have shown the potential of nasal irrigation in reducing viral clearance time and alleviating local symptoms of COVID-19. However, views differ regarding its efficacy in improving systemic symptoms. Thus, we sought to examine whether saline nasal irrigation might play a role in treatment and self-care after COVID-19 infection, but further validation is still necessary. Methods: We conducted a retrospective analysis of 468 patients and 51 healthcare personnel concurrently. The participants were grouped based on whether they received saline nasal irrigation. We used χ2 tests and Fisher's exact tests to assess the differences in the rates of COVID-19 infection and the rates of developing a fever after COVID-19 infection among different groups. Additionally, we used independent samples t-tests and Mann-Whitney U tests to evaluate differences in the maximum fever temperature and fever duration among participants with fever in different groups. Results: The rate of developing a fever after COVID-19 infection was lower (37.7%) in the patients who underwent saline nasal irrigation. Among all febrile patients, there was no difference in the highest fever temperature, but patients who underwent saline nasal irrigation had a shorter fever duration (1.72±1.05 days). Additionally, the rate of COVID-19 infection and the rate of developing a fever were higher, and fever symptoms were more severe in the healthcare worker group than in the patient group. Conclusions: Saline nasal irrigation can alleviate symptoms caused by COVID-19 infection.

12.
Transl Cancer Res ; 13(1): 394-412, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38410204

ABSTRACT

Background: Radiotherapy (RT) is a mainstay of head and neck squamous cell carcinoma (HNSCC) treatment. Due to the influence of RT on tumor cells and immune/stromal cells in microenvironment, some studies suggest that immunologic landscape could shape treatment response. To better predict the survival based on genomic data, we developed a prognostic model using tumor-infiltrating immune cell (TIIC) signature to predict survival in patients undergoing RT for HNSCC. Methods: Gene expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Data from HNSCC patients undergoing RT were extracted for analysis. TIICs prevalence in HNSCC patients was quantified by gene set variation analysis (GSVA) algorithm. TIICs and post-RT survival were analyzed using univariate Cox regression analysis and used to construct and validate a tumor-infiltrating cells score (TICS). Results: Five of 26 immune cells were significantly associated with HNSCC prognosis in the training cohort (all P<0.05). Kaplan-Meier (KM) survival curves showed that patients in the high TICS group had better survival outcomes (log-rank test, P<0.05). Univariate analyses demonstrated that the TICS had independent prognostic predictive ability for RT outcomes (P<0.05). Patients with high TICS scores showed significantly higher expression of immune-related genes. Functional pathway analyses further showed that the TICS was significantly related to immune-related biological process. Stratified analyses supported integrating TICS and tumor mutation burden (TMB) into individualized treatment planning, as an adjunct to classification by clinical stage and human papillomavirus (HPV) infection. Conclusions: The TICS model supports a personalized medicine approach to RT for HNSCC. Increased prevalence of TIIC within the tumor microenvironment (TME) confers a better prognosis for patients undergoing treatment for HNSCC.

13.
Small ; : e2308850, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366271

ABSTRACT

Personalized radiotherapy strategies enabled by the construction of hypoxia-guided biological target volumes (BTVs) can overcome hypoxia-induced radioresistance by delivering high-dose radiotherapy to targeted hypoxic areas of the tumor. However, the construction of hypoxia-guided BTVs is difficult owing to lack of precise visualization of hypoxic areas. This study synthesizes a hypoxia-responsive T1 , T2 , T2 mapping tri-modal MRI molecular nanoprobe (SPION@ND) and provides precise imaging of hypoxic tumor areas by utilizing the advantageous features of tri-modal magnetic resonance imaging (MRI). SPION@ND exhibits hypoxia-triggered dispersion-aggregation structural transformation. Dispersed SPION@ND can be used for routine clinical BTV construction using T1 -contrast MRI. Conversely, aggregated SPION@ND can be used for tumor hypoxia imaging assessment using T2 -contrast MRI. Moreover, by introducing T2 mapping, this work designs a novel method (adjustable threshold-based hypoxia assessment) for the precise assessment of tumor hypoxia confidence area and hypoxia level. Eventually this work successfully obtains hypoxia tumor target and accurates hypoxia tumor target, and achieves a one-stop hypoxia-guided BTV construction. Compared to the positron emission tomography-based hypoxia assessment, SPION@ND provides a new method that allows safe and convenient imaging of hypoxic tumor areas in clinical settings.

14.
Aging Clin Exp Res ; 36(1): 48, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418612

ABSTRACT

BACKGROUND: Few studies have compared different measures of frailty for predicting adverse outcomes. It remains unknown which frailty measurement approach best predicts healthcare utilization such as hospitalization and mortality. AIMS: This study aims to compare three approaches to measuring frailty-grip strength, frailty phenotype, and frailty index-in predicting hospitalization and mortality among middle-aged and older Canadians. METHODS: We analyzed baseline and the first 3-year follow-up data for 30,097 participants aged 45 to 85 years from the comprehensive cohort of the Canadian Longitudinal Study on Aging (CLSA). Using separate logistic regression models adjusted for multimorbidity, age and biological sex, we predicted participants' risks for overnight hospitalization in the past 12 months and mortality, at the first 3-year follow-up, using each of the three frailty measurements at baseline. Model discrimination was assessed using Harrell's c-statistic and calibration assessed using calibration plots. RESULTS: The predictive performance of all three measures of frailty were roughly similar when predicting overnight hospitalization and mortality risk among CLSA participants. Model discrimination measured using c-statistics ranged from 0.67 to 0.69 for hospitalization and 0.79 to 0.80 for mortality. All measures of frailty yielded strong model calibration. DISCUSSION AND CONCLUSION: All three measures of frailty had similar predictive performance. Discrimination was modest for predicting hospitalization and superior in predicting mortality. This likely reflects the objective nature of mortality as an outcome and the challenges in reducing the complex concept of healthcare utilization to a single variable such as any overnight hospitalization.


Subject(s)
Frailty , Hospitalization , Mortality , Aged , Humans , Middle Aged , Aging , Canada , Frail Elderly , Longitudinal Studies , North American People
15.
Quant Imaging Med Surg ; 14(2): 1451-1465, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415135

ABSTRACT

Background: Microvascular dysfunction in patients with nonobstructive coronary artery disease is increasingly being recognized as an important health issue. This systematic review and meta-analysis evaluated the effectiveness of ranolazine, an antianginal agent, in improving coronary microvascular function. Methods: We conducted a comprehensive literature search of the Cochrane Library, PubMed, Embase, China National Knowledge Infrastructure, the Chinese BioMedical Literature Database, and gray literature databases until September 30, 2023. The included studies were randomized controlled trials (RCTs) published in the English or Chinese languages that screened for eligibility using two independent investigators. Risk of bias was evaluated with the Cochrane Collaboration tool. Subgroup and sensitivity analyses were used to identify sources of heterogeneity. Meta-analysis was performed using RevMan version 5.4 (Cochrane) and Stata version 16.0 (StataCorp). Results: From 1,470 citations, 8 RCTs involving 379 participants were included in this analysis. Our findings showed that ranolazine increased coronary flow reserve (CFR) over an 8 to 12-week follow-up period [standardized mean difference =1.16; 95% confidence interval (CI): 0.4-1.89; P=0.002]. Ranolazine increased the global myocardial perfusion reserve index (MPRI) [weighted mean difference (WMD) =0.18; 95% CI: 0.07-0.29; P=0.002] and the midsubendocardial MPRI (WMD =0.10; 95% CI: 0.02-0.19; P=0.02). Moreover, ranolazine improved 3 of the 5 Seattle Angina Questionnaire scores, namely, physical functioning (WMD =4.89; 95% CI: 0.14 to 9.64; P=0.04), angina stability (WMD =17.31; 95% CI: 7.13-27.49; P=0.0009), and quality of life (WMD =10.11; 95% CI: 3.57-16.65; P=0.0003). Trial sequential analysis showed that the meta-analysis of angina stability and quality of life scores had a sufficient sample size and statistical power. Conclusions: Our analysis suggests that ranolazine is associated with improvements in CFR, myocardial perfusion, and the Seattle Angina Questionnaire scores in patients with nonobstructive coronary artery disease. However, further large-scale RCTs with long-term follow-up are recommended to validate these findings and provide a more comprehensive understanding of the effects of ranolazine on coronary microvascular function.

16.
Am J Ind Med ; 67(3): 200-213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38192156

ABSTRACT

BACKGROUND: Worldwide, lung cancer is the second leading cause of cancer death in women. The present study explored associations between occupational exposures that are prevalent among women, and lung cancer. METHODS: Data from 10 case-control studies of lung cancer from Europe, Canada, and New Zealand conducted between 1988 and 2008 were combined. Lifetime occupational history and information on nonoccupational factors including smoking were available for 3040 incident lung cancer cases and 4187 controls. We linked each reported job to the Canadian Job-Exposure Matrix (CANJEM), which provided estimates of probability, intensity, and frequency of exposure to each selected agent in each job. For this analysis, we selected 15 agents (cleaning agents, biocides, cotton dust, synthetic fibers, formaldehyde, cooking fumes, organic solvents, cellulose, polycyclic aromatic hydrocarbons from petroleum, ammonia, metallic dust, alkanes C18+, iron compounds, isopropanol, and calcium carbonate) that had lifetime exposure prevalence of at least 5% in the combined study population. For each agent, we estimated lung cancer risk in each study center for ever-exposure, by duration of exposure, and by cumulative exposure, using separate logistic regression models adjusted for smoking and other covariates. We then estimated the meta-odds ratios using random-effects meta-analysis. RESULTS AND CONCLUSIONS: None of the agents assessed showed consistent and compelling associations with lung cancer among women. The following agents showed elevated odds ratio in some analyses: metallic dust, iron compounds, isopropanol, and organic solvents. Future research into occupational lung cancer risk factors among women should prioritize these agents.


Subject(s)
Iron Compounds , Lung Neoplasms , Occupational Diseases , Occupational Exposure , Humans , Female , Lung Neoplasms/etiology , Lung Neoplasms/chemically induced , 2-Propanol , Canada/epidemiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Dust/analysis , Risk Factors , Solvents/toxicity , Case-Control Studies , Occupational Diseases/etiology , Occupational Diseases/chemically induced
17.
Ecotoxicol Environ Saf ; 271: 115989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242047

ABSTRACT

Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.


Subject(s)
Cigarette Smoking , Mitochondrial Diseases , Ovarian Reserve , Female , Humans , Animals , Mice , Proteomics , Granulosa Cells/metabolism , Cell Proliferation/physiology , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitochondrial Diseases/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Tobacco Products
18.
Polymers (Basel) ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276703

ABSTRACT

Flexible sensors are becoming the focus of research because they are very vital for intelligent products, real-time data monitoring, and recording. The flat silk cocoon (FSC), as a special form of cocoon, has all the advantages of silk, which is an excellent biomass carbon-based material and a good choice for preparing flexible sensors. In this work, a flexible piezoresistive sensor was successfully prepared by encapsulating carbonized flat silk cocoons (CFSCs) using an elastic matrix polydimethylsiloxane (PDMS). The sensing performance of the material is 0.01 kPa-1, and the monitoring range can reach 680.57 kPa. It is proved that the sensor can detect human motion and has excellent durability (>800 cycles). In addition, a sensor array for a keyboard based on CFSCs was explored. The sensor has a low production cost and a simple preparation process, and it is sustainable and environmentally friendly. Thus, it may have potential applications in wearable devices and human-computer interactions.

19.
Cell Rep Med ; 5(2): 101357, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38237597

ABSTRACT

Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockade has become a mainstay of cancer immunotherapy. Targeting the PD-1/PD-L1 axis with small molecules is an attractive approach to enhance antitumor immunity. Here, we identified a natural marine product, benzosceptrin C (BC), that enhances the cytotoxicity of T cells to cancer cells by reducing the abundance of PD-L1. Furthermore, BC exerts its antitumor effect in mice bearing MC38 tumors by activating tumor-infiltrating T cell immunity. Mechanistic studies suggest that BC can prevent palmitoylation of PD-L1 by inhibiting DHHC3 enzymatic activity. Subsequently, PD-L1 is transferred from the membrane to the cytoplasm and cannot return to the membrane via recycling endosomes, triggering lysosome-mediated degradation of PD-L1. Moreover, the combination of BC and anti-CTLA4 effectively enhances antitumor T cell immunity. Our findings reveal a previously unrecognized antitumor mechanism of BC and represent an alternative immune checkpoint blockade (ICB) therapeutic strategy to enhance the efficacy of cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Imidazoles , Neoplasms , Pyrroles , Animals , Mice , Programmed Cell Death 1 Receptor , Neoplasms/drug therapy , Neoplasms/metabolism , Lysosomes/metabolism
20.
Microvasc Res ; 151: 104617, 2024 01.
Article in English | MEDLINE | ID: mdl-37918522

ABSTRACT

Type 1 diabetes mellitus (T1DM) is predominantly managed using insulin replacement therapy, however, pancreatic microcirculatory disturbances play a critical role in T1DM pathogenesis, necessitating alternative therapies. This study aimed to investigate the protective effects of glycine supplementation on pancreatic microcirculation in T1DM. Streptozotocin-induced T1DM and glycine-supplemented mice (n = 6 per group) were used alongside control mice. Pancreatic microcirculatory profiles were determined using a laser Doppler blood perfusion monitoring system and wavelet transform spectral analysis. The T1DM group exhibited disorganized pancreatic microcirculatory oscillation. Glycine supplementation significantly restored regular biorhythmic contraction and relaxation, improving blood distribution patterns. Further-more, glycine reversed the lower amplitudes of endothelial oscillators in T1DM mice. Ultrastructural deterioration of islet microvascular endothelial cells (IMECs) and islet microvascular pericytes, including membrane and organelle damage, collagenous fiber proliferation, and reduced edema, was substantially reversed by glycine supplementation. Additionally, glycine supplementation inhibited the production of IL-6, TNF-α, IFN-γ, pro-MMP-9, and VEGF-A in T1DM, with no significant changes in energetic metabolism observed in glycine-supplemented IMECs. A statistically significant decrease in MDA levels accompanied by an increase in SOD levels was also observed with glycine supplementation. Notably, negative correlations emerged between inflammatory cytokines and microhemodynamic profiles. These findings suggest that glycine supplementation may offer a promising therapeutic approach for protecting against pancreatic microcirculatory dysfunction in T1DM.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Mice , Animals , Microcirculation , Endothelial Cells , Islets of Langerhans/blood supply , Islets of Langerhans/metabolism , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...