Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(51): 111137-111151, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801248

ABSTRACT

Heavy metal pollution in wastewater poses a grave danger to the environment and the human body. Pumice is a mineral with abundant reserves and low prices, and its prospect of heavy metal adsorbent is very broad. In this work, we modified pumice with basic magnesium carbonate nanosheets by a convenient hydrothermal synthesis. The adsorption capacity of heavy metals is greatly improved. The effects of different pH and adsorption dosages are investigated. All the optimum pH values for Cu2+, Pb2+, and Cd2+ are 5. The adsorption of three kinds of ions conforms to the quasi-second-order adsorption kinetics model. The theoretical adsorption capacities of Cu2+, Pb2+, and Cd2+, which are calculated by the Langmuir model, are 235.29 mg/L, 595.24 mg/L, and 370.34 mg/L, respectively. The adsorption of Cu2+ and Cd2+ fit the Langmuir model better. The Freundlich model is fitted well with the adsorption of Pb2+. In the experiment simulating real wastewater, the adsorption capacity of heavy metals is not affected. It also shows good reusability in three regeneration cycles. And Mg5(CO3)4(OH)2·4H2O@pumice adsorption column showed the good removal efficiency of three heavy metals at different concentrations and different spatial velocities in the column experiment. Thus, it is believed that the Mg5(CO3)4(OH)2·4H2O@pumice is a promising adsorbent for the efficient removal of heavy metals.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Cadmium , Wastewater , Adsorption , Lead , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Kinetics , Hydrogen-Ion Concentration
2.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985976

ABSTRACT

In the present work, the porous MgO nanosheet-modified activated carbon fiber felt (MgO@ACFF) was prepared for fluoride removal. The MgO@ACFF was characterized by XRD, SEM, TEM, EDS, TG, and BET. The fluoride adsorption performance of MgO@ACFF also has been investigated. The adsorption rate of the MgO@ACFF toward fluoride is fast; more than 90% of the fluoride ions can be adsorbed within 100 min, and the adsorption kinetics of MgO@ACFF can be fitted in a pseudo-second-order model. The adsorption isotherm of MgO@ACFF fitted well in the Freundlich model. Additionally, the fluoride adsorption capacity of MgO@ACFF is larger than 212.2 mg/g at neutral. In a wide pH range of 2-10, the MgO@ACFF can efficiently remove fluoride from water, which is meaningful for practical usage. The effect of co-existing anions on the fluoride removal efficiency of the MgO@ACFF also has been studied. Furthermore, the fluoride adsorption mechanism of the MgO@ACFF was studied by the FTIR and XPS, and the results reveal a hydroxyl and carbonate co-exchange mechanism. The column test of the MgO@ACFF also has been investigated; 505-bed volumes of 5 mg/L fluoride solution can be treated with effluent under 1.0 mg/L. It is believed that the MgO@ACFF is a potential candidate for a fluoride adsorbent.

SELECTION OF CITATIONS
SEARCH DETAIL