Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Adv Sci (Weinh) ; : e2402038, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810152

ABSTRACT

The strong potential of platinum single atom (PtSA) in gas sensor technology is primarily attributed to its high atomic economy. Nevertheless, it is imperative to conduct further exploration to understand the impact of PtSA on the active sites. In this study, the evolution of PtSA on (100)CeO2 and (111)CeO2 is examined, revealing notable disparities in the position and activity of surface PtSA on different crystal planes. The PtSA in (100)CeO2 surface can enhance the stability of Ce3+ and construct a frustrated Lewis pair (FLP) to form a double active site by combining the steric hindrance effect of oxygen vacancies, which increases the response value from 1.8 to 27 and reduce the response-recovery time from 140-192 s to 25-26 s toward five ppm NO2 at room temperature. Conversely, PtSA tends to bind to terminal oxygen on the surface of (111)CeO2 and become an independent reaction site. The response value of PtSA-(111)CeO2 surface only increased from 1.6 to 3.8. This research underscores the correlation between single atoms and crystal plane effects, laying the groundwork for designing and synthesizing ultra-stable and efficient gas sensors.

2.
Adv Mater ; : e2403215, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706406

ABSTRACT

Prolonging energetic hot electrons lifetimes and surface activity in the reactive site can overcome the slow kinetics and unfavorable thermodynamics of photo-activated gas sensors. However, bulk and surface recombination limit the simultaneous optimization of both kinetics and thermodynamics. Here tandem electric fields are deployed at (111)/(100)Au-CeO2 to ensure a sufficient driving force for carrier transfer and elucidate the mechanism of the relationship between charge transport and gas-sensing performance. The asymmetric structure of the (111)/(100)CeO2 facet junction provides interior electric fields, which facilitates electron transfer from the (100)face to the (111)face. This separation of reduction and oxidation reaction sites across different crystal faces helps inhibit surface recombination. The increased electron concentration at the (111)face intensifies the interface electric field, which promotes electron transfer to the Au site. The local electric field generated by the surface plasmon resonance effect promotes the generation of high-energy energy hot-electrons, which maintains charge concentration in the interface field by injecting into (111)/(100)CeO2, thereby provide thermodynamic contributions and inhibit bulk recombination. The tandem electric fields enable the (111)/(100)Au-CeO2 to rapidly detect 5 ppm of NO2 at room temperature with stability maintained within 20 s.

3.
Neurosci Bull ; 40(4): 517-532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38194157

ABSTRACT

Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.


Subject(s)
Neurons , Transcriptome , Animals , Neurons/metabolism , Brain , Primates , Electrophysiology
4.
J Affect Disord ; 351: 309-313, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262522

ABSTRACT

BACKGROUND: There is great interindividual difference in the plasma concentration of quetiapine, and optimizing quetiapine therapy to achieve a balance between efficacy and safety is still a challenge. In our study, a population pharmacokinetic (PPK) model considering genetic information was developed with the expectation of comprehensively explaining this observation in Chinese patients with bipolar disorder. METHODS: Patients who were dispensed quetiapine and underwent the therapeutic drug monitoring (TDM) were included. The genotypes of CYP3A5*3, CYP2D6*10, and ABCB1 C3435T/G2677T were analyzed. Finally, a multivariable linear regression model was applied to describe the PPK of quetiapine considering the covariates weight, height and genotype information. RESULTS: A total of 175 TDM points from 107 patients were adopted for PPK model development. Resultantly, the CL/F of quetiapine in CYP3A5 expressers was 81.1 CL/h, whereas it was 43.6 CL/h in CYP3A5 nonexpressers. The interindividual variability in CL/F was 47.7 %. However, neither the ABCB1 nor CYP2D6 genotype was significantly associated with the predictor of quetiapine clearance in our study. LIMITATIONS: Only trough concentrations were collected, and the span between different points was relatively wide, impeding the application of the typical nonlinear compartment model for PPK analysis. In addition, this was a single-center study which limited the sample of wild-type CYP3A5 carriers. CONCLUSIONS: The currently established PPK model of quetiapine considering the contribution of the CYP3A5 genotype could efficiently predict the population and individual pharmacokinetic parameters of Chinese bipolar disorder patients, which could better guide the personalized therapy with quetiapine, thus to achieve the best clinical response.


Subject(s)
Bipolar Disorder , Cytochrome P-450 CYP3A , Humans , Quetiapine Fumarate/therapeutic use , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP2D6/genetics , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Genotype , China
5.
Plant Physiol ; 195(1): 552-565, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38243383

ABSTRACT

Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Light , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Trichomes/genetics , Trichomes/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Phenotype , Promoter Regions, Genetic/genetics
6.
J Med Food ; 27(2): 110-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181190

ABSTRACT

The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1ß proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1ß, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Ipomoea batatas , Animals , Mice , Dextran Sulfate/adverse effects , Colon/pathology , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Anthocyanins/metabolism , RNA, Ribosomal, 16S , Pyroptosis , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Intestines/pathology , Disease Models, Animal
7.
Nanomaterials (Basel) ; 14(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38251151

ABSTRACT

One-dimensional silicon carbide (SiC) nanomaterials hold great promise for a series of applications, such as nanoelectronic devices, sensors, supercapacitors, and catalyst carriers, attributed to their unique electrical, mechanical, and physicochemical properties. Recent progress in their design and fabrication has led to a deep understanding of the structural evolution and structure-property correlation. Several unique attributes, such as high electron mobility, offer SiC nanomaterials an opportunity in the design of SiC-based sensors with high sensitivity. In this review, a brief introduction to the structure and properties of SiC is first presented, and the latest progress in design and fabrication of one-dimensional SiC nanomaterials is summarized. Then, the sensing applications of one-dimensional SiC nanomaterials are reviewed. Finally, our perspectives on the important research direction and future opportunities of one-dimensional SiC nanomaterial for sensors are proposed.

8.
Nat Commun ; 14(1): 7497, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980356

ABSTRACT

The degenerative process in Parkinson's disease (PD) causes a progressive loss of dopaminergic neurons (DaNs) in the nigrostriatal system. Resolving the differences in neuronal susceptibility warrants an amenable PD model that, in comparison to post-mortem human specimens, controls for environmental and genetic differences in PD pathogenesis. Here we generated high-quality profiles for 250,173 cells from the substantia nigra (SN) and putamen (PT) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian macaques and matched controls. Our primate model of parkinsonism recapitulates important pathologic features in nature PD and provides an unbiased view of the axis of neuronal vulnerability and resistance. We identified seven molecularly defined subtypes of nigral DaNs which manifested a gradient of vulnerability and were confirmed by fluorescence-activated nuclei sorting. Neuronal resilience was associated with a FOXP2-centered regulatory pathway shared between PD-resistant DaNs and glutamatergic excitatory neurons, as well as between humans and nonhuman primates. We also discovered activation of immune response common to glial cells of SN and PT, indicating concurrently activated pathways in the nigrostriatal system. Our study provides a unique resource to understand the mechanistic connections between neuronal susceptibility and PD pathophysiology, and to facilitate future biomarker discovery and targeted cell therapy.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Animals , Humans , Mice , Parkinson Disease/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Macaca , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Disease Models, Animal , Mice, Inbred C57BL
9.
BMC Ophthalmol ; 23(1): 401, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803306

ABSTRACT

BACKGROUND: Neovascular age-related macular degeneration (AMD) is responsible for the majority of severe vision loss cases and is mainly caused by choroidal neovascularization (CNV). This condition persists or recurs in a subset of patients and regresses after 5 or more years of anti-vascular endothelial growth factor (VEGF) treatment. The precise mechanisms of CNV continue to be elucidated. According to our previous studies, macrophages play a critical role in CNV. Herein, we aimed to determine the morphological changes in macrophages in CNV to help us understand the dynamic changes. METHODS: Mice were subjected to laser injury to induce CNV, and lesion expansion and macrophage transformation were examined by immunofluorescence and confocal analysis. Several strategies were used to verify the dynamic changes in macrophages. Immunofluorescence and confocal assays were performed on choroidal flat mounts to evaluate the morphology and phenotype of macrophages in different CNV phases, and the results were further verified by western blotting and RT-PCR. RESULTS: The location of infiltrated macrophages changed after laser injury in the CNV mouse model, and macrophage morphology also dynamically changed. Branching macrophages gradually shifted to become round with the progression of CNV, which was certified to be an M2 phenotypic shift. CONCLUSIONS: Dynamic changes in macrophage morphology were observed during CNV formation, and the round-shaped M2 phenotype could promote neovascularization. In general, the changes in morphology we observed in this study can help us to understand the critical role of macrophages in CNV progression and exploit a potential treatment option for CNV indicated by a shift in macrophage polarity.


Subject(s)
Choroidal Neovascularization , Humans , Mice , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Macrophages/metabolism , Macrophages/pathology , Choroid/pathology , Lasers , Disease Models, Animal , Mice, Inbred C57BL
11.
Drug Des Devel Ther ; 17: 2051-2061, 2023.
Article in English | MEDLINE | ID: mdl-37457890

ABSTRACT

Purpose: Suramin is a multifunctional molecule with a wide range of potential applications, including parasitic and viral diseases, as well as cancer. Methods: A double-blinded, randomized, placebo-controlled single ascending dose study was conducted to investigate the safety, tolerability, and pharmacokinetics of suramin in healthy Chinese volunteers. A total of 36 healthy subjects were enrolled. All doses of suramin sodium and placebo were administered as a 30-minute infusion. Blood and urine samples were collected at the designated time points for pharmacokinetic analysis. Safety was assessed by clinical examinations and adverse events. Results: After a single dose, suramin maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to the time of the last measurable concentration (AUClast) increased in a dose-proportional manner. The plasma half-life (t1/2) was dose-independent, average 48 days (range 28-105 days). The cumulative percentages of the dose excreted in urine over 7 days were less than 4%. Suramin can be detected in urine samples for longer periods (more than 140 days following infusion). Suramin was generally well tolerated. Treatment-emergent adverse events (TEAEs) were generally mild in severity. Conclusion: The PK and safety profiles of suramin in Chinese subjects indicated that 10 mg/kg or 15 mg/kg could be an appropriate dose in a future multiple-dose study.


Subject(s)
East Asian People , Suramin , Humans , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , Healthy Volunteers , Suramin/administration & dosage , Suramin/adverse effects , Suramin/blood , Suramin/pharmacokinetics , Suramin/urine
12.
Int J Antimicrob Agents ; 62(2): 106875, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37276894

ABSTRACT

Central nervous system (CNS) tuberculosis (TB) is a devastating and often life-threatening disease caused by Mycobacterium tuberculosis. Contezolid, a new oxazolidinone, has demonstrated potent antimycobacterial activity in both in-vivo and in-vitro studies, with lower toxicity than linezolid. However, pharmacokinetic data are still not available for contezolid in the CNS of patients with CNS TB. This article reports the steady-state concentrations of contezolid in serum and cerebrospinal fluid (CSF) of a patient receiving contezolid as part of multi-drug treatment for tuberculous meningoencephalitis. At weeks 7 and 11 (7 h post-dose) after initiation of contezolid therapy, the serum concentrations of contezolid were 9.64 mg/L and 9.36 mg/L, respectively. In CSF, the observed concentrations of contezolid were 0.54 mg/L and 1.15 mg/L, respectively. The CSF:serum concentration ratios were 0.056 and 0.123 at weeks 7 and 11, respectively. The observed concentrations in CSF were above the minimum inhibitory concentration of contezolid against M. tuberculosis, and were close to the estimated serum unbound fraction of contezolid (10%), suggesting that unbound contezolid has high CSF permeability.


Subject(s)
Meningoencephalitis , Mycobacterium tuberculosis , Oxazolidinones , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/drug therapy , Pyridones , Meningoencephalitis/drug therapy , Cerebrospinal Fluid
13.
ACS Appl Mater Interfaces ; 15(22): 26316-26327, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37245159

ABSTRACT

The development of a strategy for imaging of glutathione (GSH) and apurinic/apyrimidinic endonuclease 1 (APE1) in an organism remains challenging despite their significance in elaborating the correlated pathophysiological processes. Therefore, in this study, we propose a DNA-based AND-gated nanosensor for fluorescence imaging of the GSH as well as APE1 in living cells, animals, and organoids. The DNA probe is composed of a G-strand and A-strand. The disulfide bond in the G-strand is cleaved through a GSH redox reaction, and the hybridization stability between the G-strand and A-strand is decreased, leading to a conformational change of the A-strand. In the presence of APE1, the apurinic/apyrimidinic (AP) site in the A-strand is digested, producing a fluorescence signal for the correlated imaging of GSH and APE1. This nanosensor enables monitoring of the expression level change of GSH and APE1 in cells. Additionally, we illustrate the capability of this "dual-keys-and-locked" conceptual methodology in achieving specific tumor imaging when GSH and APE1 are present simultaneously (overexpressed GSH and APE1 in tumor cells) with improving tumor-to-normal tissue ratio in vivo. Furthermore, using this nanosensor, the GSH and APE1 also are visualized in organoids that recapitulate the phenotypic and functional traits of the original biological specimens. Overall, this study demonstrates the potential of our proposed biosensing technology in investigating the roles of various biological molecules involved in specific diseases.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Endonucleases , Animals , DNA Probes , Organoids
14.
Nat Protoc ; 18(6): 1930-1957, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37045994

ABSTRACT

The low number of neural progenitor cells (NPCs) present in the adult and aged primate brains represents a challenge for generating high-yield and viable in vitro cultures of primary brain cells. Here we report a step-by-step approach for the fast and reproducible isolation of high-yield and viable primary brain cells, including mature neurons, immature cells and NPCs, from adult and aged macaques. We describe the anesthesia, transcardial perfusion and brain tissue preparation; the subsequent microdissection of the regions of interest and their enzymatic dissociation, leading to the separation of single cells. The cell isolation steps of our protocol can also be used for routine cell culturing, in particular for NPC expansion and differentiation, suitable for studies of hippocampal neurogenesis in the adult macaque brain. The purified primary brain cells are largely free from myelin debris and erythrocytes, paving the way for multiple downstream applications in vitro and in vivo. When combined with single-cell profiling techniques, this approach allows an unbiased and comprehensive mapping of cell states in the adult and aged macaque brain, which is needed to advance our understanding of human cognitive and neurological diseases. The neural cell isolation protocol requires 4 h and a team of four to six users with expertize in primary brain cell isolation to avoid tissue hypoxia during the time-sensitive steps of the procedure.


Subject(s)
Cell Culture Techniques , Neural Stem Cells , Animals , Adult , Humans , Aged , Cell Culture Techniques/methods , Neurons , Cells, Cultured , Cell Differentiation/physiology , Cell Separation
15.
Phytother Res ; 37(7): 2965-2978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36879546

ABSTRACT

Acute lung injury (ALI) caused by acute bacterial infection remains a common life-threatening lung disease. An increased inflammatory response is the basis for the occurrence and development of ALI. Most antibiotics can only reduce the bacterial load but do not protect from lung damage because of an excessive immune response. Chrysophanol (chrysophanic acid, Chr), as a natural anthraquinone extracted from Rheum palmatum L., has various biological functions, including anti-inflammatory, anti-cancer activities, and ameliorative effects on cardiovascular diseases. Considering these properties, we investigated the effect of Chr in Klebsiella pneumoniae (KP)-induced ALI mice and its potential mechanism. Our results showed that Chr had protective effects against KP-infected mice, including increased survival rate, decreased bacterial burden, reduced recruitment of immune cells, and reduced reactive oxygen species level of lung macrophages. Chr reduced the expression of inflammatory cytokines by inhibiting the toll-like receptor 4/nuclear factor kappa-B (TLR4/NF-κB) signaling pathway and inflammasome activation and strengthening autophagy. Overactivation of the TLR4/NF-κB signaling pathway by the activator Neoseptin 3 led to Chr losing control of inflammatory cytokines in cells, resulting in increased cell death. Similarly, overactivation of the c-Jun N-terminal kinase signaling pathway using the activator anisomycin resulted in Chr losing its inhibitory effect on NOD-like receptor thermal protein domain associated protein 3 (NFRP3) inflammasome activation, and cell viability was reduced. In addition, autophagy was blocked by siBeclin1, so Chr could not reduce inflammatory factors, and cell viability was markedly inhibited. Collectively, this work unravels the molecular mechanism underpinning Chr-alleviated ALI via inhibiting pro-inflammatory cytokines. Thus, Chr is a potential therapeutic agent for KP-induced ALI.


Subject(s)
Acute Lung Injury , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Klebsiella pneumoniae/metabolism , Inflammasomes , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Lung , Cytokines/metabolism , Lipopolysaccharides/pharmacology
16.
Zool Res ; 44(2): 315-322, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36785898

ABSTRACT

Adult hippocampal neurogenesis (AHN) is crucial for learning, memory, and emotion. Deficits of AHN may lead to reduced cognitive abilities and neurodegenerative disorders, such as Alzheimer's disease. Extensive studies on rodent AHN have clarified the developmental and maturation processes of adult neural stem/progenitor cells. However, to what extent these findings apply to primates remains controversial. Recent advances in next-generation sequencing technologies have enabled in-depth investigation of the transcriptome of AHN-related populations at single-cell resolution. Here, we summarize studies of AHN in primates. Results suggest that neurogenesis is largely shared across species, but substantial differences also exist. Marker gene expression patterns in primates differ from those of rodents. Compared with rodents, the primate hippocampus has a higher proportion of immature dentate granule cells and a longer maturation period of newly generated granule cells. Future research on species divergence may deepen our understanding of the mechanisms underlying adult neurogenesis in primates.


Subject(s)
Hippocampus , Neural Stem Cells , Animals , Hippocampus/metabolism , Neurogenesis , Neurons , Primates
17.
J Cancer Res Clin Oncol ; 149(7): 2937-2949, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35835883

ABSTRACT

OBJECTIVE: Immune checkpoint inhibitors (ICIs) have been validated in epidermal growth factor receptor (EGFR) wild-type advanced non-small cell lung cancer (NSCLC) patients. However, there exists no evidence regarding NSCLC patients harboring EGFR mutations, experiencing EGFR-TKI (tyrosine kinase inhibitor) treatment failure. We collected clinical information from real world and conducted a time series-based meta-analysis to determine the efficacy and safety of ICIs in patients harboring EGFR mutations and experienced EGFR-TKIs resistance. METHODS: Twenty-two NSCLC patients with EGFR mutations after TKI resistance were included from two hospitals. PubMed, Embase and Cochrane Library were searched for relevant literature published until December 31, 2021. Endpoint outcomes included mortality and progression-free survival (PFS) at different times of follow-up. RESULTS: In total, 22 patients showed that the median PFS was 5.6 months (range 2.0-9.0 months). According to treatment strategies, the median PFS was 2.4 months (range 2.0-5.3 months) in the ICI monotherapy group and 5.9 months (range 2.8-9.0 months) in the ICI combined Chemotherapy group. Additionally, sixteen studies, including 5 trials, 10 controlled cohorts and 1 real-world study, were assessed, involving a total of ICI-treated NSCLC patients with EGFR mutation after TKI failure. The 6-month survival and PFS rate were 0.82 (95% CI 0.36-0.97) and 0.55 (95% CI 0.34-0.74), respectively. ICI combined chemotherapy showed the best survival outcome among these groups, as demonstrated by the 12-month survival rate and PFS. No new safety signals were identified with the combination therapy. The frequency of treatment-related adverse events was similar to that in previously reported studies of chemotherapy combined with checkpoint inhibitors. CONCLUSIONS: The addition of ICIs plus chemotherapy may significantly improve progression-free survival among patients with locally advanced or metastatic non-squamous NSCLC who EGFR-TKIs resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Immune Checkpoint Inhibitors/adverse effects , Mutation , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics
18.
Emerg Infect Dis ; 28(12)2022 12.
Article in English | MEDLINE | ID: mdl-36417919

ABSTRACT

Acinetobacter baumannii is a nosocomial pathogen associated with severe illness and death. Glucocorticoid aerosol is a common inhalation therapy in patients receiving invasive mechanical ventilation. We conducted a prospective cohort study to analyze the association between glucocorticoid aerosol therapy and A. baumannii isolation from ventilator patients in China. Of 497 enrolled patients, 262 (52.7%) received glucocorticoid aerosol, and A. baumannii was isolated from 159 (32.0%). Glucocorticoid aerosol therapy was an independent risk factor for A. baumannii isolation (hazard ratio 1.5, 95% CI 1.02-2.28; p = 0.038). Patients receiving glucocorticoid aerosol had a higher cumulative hazard for A. baumannii isolation and analysis showed that glucocorticoid aerosol therapy increased A. baumannii isolation in most subpopulations. Glucocorticoid aerosol was not a direct risk factor for 30-day mortality, but A. baumannii isolation was independently associated with 30-day mortality in ventilator patients. Physicians should consider potential A. baumannii infection when prescribing glucocorticoid aerosol therapy.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Respiration, Artificial , Glucocorticoids/therapeutic use , Prospective Studies , Intensive Care Units , Retrospective Studies
19.
Nat Commun ; 13(1): 6902, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371428

ABSTRACT

The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.


Subject(s)
Visual Cortex , Mice , Humans , Animals , Species Specificity , Visual Cortex/physiology , GABAergic Neurons/metabolism , Neuronal Plasticity/physiology , Sequence Analysis, RNA , Muscle Proteins/metabolism , Transcription Factors/metabolism
20.
Cell Rep ; 40(11): 111322, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103830

ABSTRACT

Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.


Subject(s)
Retinal Ganglion Cells , Transcriptome , Animals , Mammals , Phenotype , Retinal Ganglion Cells/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...