Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 5(8): 10328, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36037041

ABSTRACT

[This corrects the article DOI: 10.1021/acsaem.2c00977.].

2.
Dalton Trans ; 49(44): 15587-15591, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33140791

ABSTRACT

Donor-acceptor two-dimensional covalent organic frameworks, PD-COF-23 and PD-COF-23-Ni, are constructed and applied for selective CO2 reduction with CO conversion rates of 20.9 µmol g-1 h-1 and 40.0 µmol g-1 h-1, respectively, in the absence of any additional photosensitizers and noble metal co-catalysts within an operation time of 25 h. The multilayer nanosheet structure, efficient charge separation and transport, and internal reductive quenching cycle of the NiTAPP fragments of PD-COF-23-Ni result in its higher photocatalytic efficiency than that of PD-COF-23.

3.
Inorg Chem ; 59(17): 12643-12649, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32813516

ABSTRACT

We employ facile aromatic nucleophilic substitution between the mercapto (-SH) and arylfluoro (Ar-F) groups to achieve extensive and robust cross-linking of a coordination host by porphyrin guests that also serve the purpose of versatile postsynthetic functionalization. For this, a tritopic linker with three trident-like thiol-flanked carboxyl units are reacted with ZrOCl2·8H2O to afford a two-dimensional (3,6-connected) net. The wide aperture of the porous framework solid, together with its stability in both air and boiling water, facilitates the entry of bulky metalloporphyrin guests and the subsequent property studies. On the porphyrin side, four pentafluorophenyl (C6F5-) groups offer multiple fluoro groups to facilitate their replacement by the thiol groups from the host net. The inserted metalloporphyrin bridges impart to the metal-organic framework (MOF) host stable and recyclable activities for photocatalytic hydrogen production. We also disclose an improvement in synthetic methodology, in which BBr3 is used to simultaneously cleave the ester and benzyl thioether groups to more efficiently access thiol-equipped carboxylic acid building block.

SELECTION OF CITATIONS
SEARCH DETAIL
...