Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 33: 683-697, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37650119

ABSTRACT

Autosomal recessive limb-girdle muscular dystrophy 21 (LGMDR21) is caused by pathogenic variants in protein O-glucosyltransferase 1 (POGLUT1), which is responsible for O-glucosylation of specific epidermal growth factor (EGF) repeats found in ∼50 mammalian proteins, including Notch receptors. Previous data from patient biopsies indicated that impaired Notch signaling, reduction of muscle stem cells, and accelerated differentiation are probably involved in disease etiopathology. Using patient induced pluripotent stem cells (iPSCs), their corrected isotypes, and control iPSCs, gene expression profiling indicated dysregulation of POGLUT1, NOTCH, muscle development, extracellular matrix (ECM), cell adhesion, and migration as involved pathways. They also exhibited reduced in vitro POGLUT1 enzymatic activity and NOTCH signaling as well as defective myogenesis, proliferation, migration and differentiation. Furthermore, in vivo studies demonstrated significant reductions in engraftment, muscle stem cell formation, PAX7 expression, and maintenance, along with an increased percentage of mislocalized PAX7+ cells in the interstitial space. Gene correction in patient iPSCs using CRISPR-Cas9 nickase led to the rescue of the main in vitro and in vivo phenotypes. These results demonstrate the efficacy of iPSCs and gene correction in disease modeling and rescue of the phenotypes and provide evidence of the involvement of muscle stem cell niche localization, PAX7 expression, and cell migration as possible mechanisms in LGMDR21.

2.
Cells ; 10(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34685726

ABSTRACT

Advancements in reprogramming somatic cells into induced pluripotent stem cells (iPSCs) have provided a strong framework for in vitro disease modeling, gene correction and stem cell-based regenerative medicine. In cases of skeletal muscle disorders, iPSCs can be used for the generation of skeletal muscle progenitors to study disease mechanisms, or implementation for the treatment of muscle disorders. We have recently developed an improved directed differentiation method for the derivation of skeletal myogenic progenitors from hiPSCs. This method allows for a short-term (2 weeks) and efficient skeletal myogenic induction (45-65% of the cells) in human pluripotent stem cells (ESCs/iPSCs) using small molecules to induce mesoderm and subsequently myotomal progenitors, without the need for any gene integration or modification. After initial differentiation, skeletal myogenic progenitors can be purified from unwanted cells using surface markers (CD10+CD24-). These myogenic progenitors have been extensively characterized using in vitro gene expression/differentiation profiling as well as in vivo engraftment studies in dystrophic (mdx) and muscle injury (VML) rodent models and have been proven to be able to engraft and form mature myofibers as well as seeding muscle stem cells. The current protocol describes a detailed, step-by-step guide for this method and outlines important experimental details and troubleshooting points for its application in any human pluripotent stem cells.


Subject(s)
Biomarkers/metabolism , Cell Differentiation , Cell Membrane/metabolism , Cell Separation/methods , Muscle Development , Muscle, Skeletal/cytology , Pluripotent Stem Cells/cytology , Cell Proliferation , Cell Shape , Cell Survival , Humans , Muscle Fibers, Skeletal/cytology
3.
ChemMedChem ; 14(13): 1271-1282, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31124602

ABSTRACT

New Delhi metallo-ß-lactamase-1 (NDM-1) poses an immediate threat to our most effective and widely prescribed drugs, the ß-lactam-containing class of antibiotics. There are no clinically relevant inhibitors to combat NDM-1, despite significant efforts toward their development. Inhibitors that use a carboxylic acid motif for binding the ZnII ions in the active site of NDM-1 make up a large portion of the >500 inhibitors reported to date. New and structurally diverse scaffolds for inhibitor development are needed urgently. Herein we report the isosteric replacement of one carboxylate group of dipicolinic acid (DPA) to obtain DPA isosteres with good inhibitory activity against NDM-1 (and related metallo-ß-lactamases, IMP-1 and VIM-2). It was determined that the choice of carboxylate isostere influences both the potency of NDM-1 inhibition and the mechanism of action. Additionally, we show that an isostere with a metal-stripping mechanism can be re-engineered into an inhibitor that favors ternary complex formation. This work provides a roadmap for future isosteric replacement of routinely used metal binding motifs (i.e., carboxylic acids) for the generation of new entities in NDM-1 inhibitor design and development.


Subject(s)
Picolinic Acids/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , Inhibitory Concentration 50 , Picolinic Acids/metabolism , Protein Binding , Zinc/chemistry , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...