Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 9(9): 220558, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36117867

ABSTRACT

The compaction characteristics of broken rock in a caving zone have a significant impact on the movement law of overburden and the prediction of surface subsidence. The mechanical properties of the broken rock were clearly affected by the original rock strength of the roof. Based on the similarity theory, the 'quartz sand-gypsum-lime-water' mixed material was used to make similar samples of original rocks with different strengths, and the compaction mechanical behaviour of broken loose rock masses with different original rock strengths was studied. The results show that (i) the greater the original rock strength of broken rock, the shorter the initial compaction stage, the earlier the transition and stable compaction stages and the lower the degree of compaction; (ii) the initial deformation modulus and ultimate axial strain had a linear relationship with the original strength of the broken rock; and (iii) under different axial pressures, the deformation modulus increased with the increasing original rock strength of the broken rock. The tangent modulus and axial stress change approximately linearly, the secant modulus and stress change linearly, and the tangent modulus and secant modulus exhibit an exponential/hyperbolic relationship with the strain. The research results have high engineering application value for using numerical method to predict the mechanical behaviour of roof rock mass with different strength in coal mining and analysing the surface subsidence.

2.
Sci Rep ; 11(1): 23152, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848806

ABSTRACT

The identification of open-pit mine water sources is of great significance in preventing water disasters. Combined with hydrochemistry and multivariate statistical analysis, this paper systematically analyzed the hydraulic connections between aquifers and the complex seepage water sources in the pit and roadway of Dagushan iron mine through qualitative analysis and quantitative calculation. According to the hydrochemical characteristics of the study area, the causes of seepage water at different positions in the mining area were reasonably explained. The results show that there is a possible hydraulic connection or similar source of water body between the bedrock fissure aquifer and the eluvium pore aquifer. The water seepage of 2# roadway mainly comes from bedrock fissure aquifer in the north of mining area. The reason for serious water seepage in the 3# roadway and the western side of the pit is that the fault connects the shallow alluvial pore aquifer and bedrock fissure aquifer. The source of water on the southern side pit comes from the river and groundwater on the southern side of the mine. The results presented here provide significant guidance for the management of mine water seepage problems.

3.
Sci Rep ; 11(1): 8841, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893365

ABSTRACT

Earth fissures caused by tectonic forces, human activities, or both seriously threaten the safety of people's lives and properties. The Taiyuan Basin, a Cenozoic downfaulted basin located in the centre of the Fen-Wei Basin tectonic belt, in northwestern China, presents the ideal study area for a hazard assessment of earth fissures. A total of 104 earth fissures have been observed in the Taiyuan Basin, with a total length of approximately 128 km. In this paper, we proposed a probabilistic method for mapping earth fissure hazards by integrating the analytic hierarchy process (AHP), the area under the curve (AUC), and the certainty factor model (CFM). Geomorphic units, geologic formations, active faults and land subsidence zones of the Taiyuan Basin were mapped in detail. Correlations between these factors and earth fissures were evaluated through spatial modelling in ArcGIS. The AUC was introduced into the AHP to weight each factor and thus, to derive an earth fissure susceptibility map. Finally, the modelled earth fissure susceptibility was compared with a digital inventory of earth fissures to develop a probability function and map the spatial variability in failure probability through the CFM. The study indicates that active faults have the greatest contribution to the generation of earth fissures. Earth fissures are prone to develop in the piedmont alluvial-diluvial clinoplain and the transitional zone near the geomorphic boundary. This mapping procedure can assist in making rational decisions regarding urban planning and infrastructure development in areas susceptible to earth fissures.

4.
MethodsX ; 7: 101061, 2020.
Article in English | MEDLINE | ID: mdl-33005570

ABSTRACT

High-quality computational meshes are crucial in the analysis of displacements and stabilities of rock and soil masses. In this paper, we present a method for generating high-quality tetrahedral meshes of geological models to be used in stability analyses of rock and soil masses. The method is implemented by utilizing the Computational Geometry Algorithms Library (CGAL). The input is a geological model consisting of triangulated surfaces, and the output is a high-quality tetrahedral mesh of the geological model. To demonstrate the effectiveness of the presented method, we apply it to generate a series of computational meshes of geological model, and we then analyse the stabilities of the rock and soil slopes on the basis of the generated tetrahedral mesh models. The applications demonstrate the effectiveness and practicability of the present method.•A method for generating high-quality tetrahedral meshes of geological models is presented.•We evaluate the quality of the tetrahedral mesh of geological model using four metrics.•Three applications demonstrate the effectiveness and practicability of the presented method.

5.
MethodsX ; 7: 100954, 2020.
Article in English | MEDLINE | ID: mdl-32596136

ABSTRACT

In this paper we specifically present a parallel solution to finding the one-ring neighboring nodes and elements for each vertex in generic meshes. The finding of nodal neighbors is computationally straightforward but expensive for large meshes. To improve the efficiency, the parallelism is adopted by utilizing the modern Graphics Processing Unit (GPU). The presented parallel solution is heavily dependent on the parallel sorting, scan, and reduction. Our parallel solution is efficient and easy to implement, but requires the allocation of large device memory.•Our parallel solution can generate the speedups of approximately 55 and 90 over the serial solution when finding the neighboring nodes and elements, respectively.•It is easy to implement due to the reason it does not need to perform the mesh-coloring before finding neighbors•There are no complex data structures, only integer arrays are needed, which makes our parallel solution very effective.

6.
R Soc Open Sci ; 6(11): 190543, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31827821

ABSTRACT

The modelling and understanding of crack propagation for elastic-plastic materials is critical in various engineering applications, such as safety analysis of concrete structures and stability analysis of rock slopes. In this paper, the local radial basis point interpolation method (LRPIM) combined with elastic-plastic theory and fracture mechanics is employed to analyse crack propagation in elastic-plastic materials. Crack propagation in elastic-plastic materials is compared using the LRPIM and eXtended finite-element method (XFEM). The comparative investigation indicates that: (i) the LRPIM results are close to the model test results, which indicates that it is feasible for analysing the crack growth of elastic-plastic materials; (ii) compared with the LRPIM, the XFEM results are closer to the experimental results, showing that the XFEM has higher accuracy and computational efficiency; and (iii) compared with the XFEM, when the LRPIM method is used to analyse crack propagation, the propagation path is not smooth enough, which can be explained as the crack tip stress and strain not being accurate enough and still needing further improvement.

7.
R Soc Open Sci ; 6(3): 181402, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31032002

ABSTRACT

During the transition from open-pit to underground mining in iron ore mines, water inrush is a prominent problem for mine safety and production. In this paper, a comprehensive method that incorporates hydrochemical analysis and numerical simulation is proposed to analyse the characteristics of water inrush during the transition from open-pit to underground mining. The proposed method revealed the migration law of groundwater and analysed the source of mine water inrush in the Yanqianshan iron mine located in Liaoning province, China. The results show that the excavated mine roadway is the primary factor affecting groundwater migration and that the source of the mine water inrush is the groundwater in the aquifer around the mine roadway. Moreover, based on the results of the study, appropriate methods for prevention and treatment of mine water inrush were proposed. This approach provides a novel idea for the assessment of water inrush hazards and will serve as a valuable reference for analogous engineering cases.

8.
Heliyon ; 4(1): e00512, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29560430

ABSTRACT

The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.

9.
R Soc Open Sci ; 4(9): 170436, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28989754

ABSTRACT

This paper focuses on designing and implementing parallel adaptive inverse distance weighting (AIDW) interpolation algorithms by using the graphics processing unit (GPU). The AIDW is an improved version of the standard IDW, which can adaptively determine the power parameter according to the data points' spatial distribution pattern and achieve more accurate predictions than those predicted by IDW. In this paper, we first present two versions of the GPU-accelerated AIDW, i.e. the naive version without profiting from the shared memory and the tiled version taking advantage of the shared memory. We also implement the naive version and the tiled version using two data layouts, structure of arrays and array of aligned structures, on both single and double precision. We then evaluate the performance of parallel AIDW by comparing it with its corresponding serial algorithm on three different machines equipped with the GPUs GT730M, M5000 and K40c. The experimental results indicate that: (i) there is no significant difference in the computational efficiency when different data layouts are employed; (ii) the tiled version is always slightly faster than the naive version; and (iii) on single precision the achieved speed-up can be up to 763 (on the GPU M5000), while on double precision the obtained highest speed-up is 197 (on the GPU K40c). To benefit the community, all source code and testing data related to the presented parallel AIDW algorithm are publicly available.

10.
Springerplus ; 5(1): 1389, 2016.
Article in English | MEDLINE | ID: mdl-27610308

ABSTRACT

This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

11.
Springerplus ; 5(1): 977, 2016.
Article in English | MEDLINE | ID: mdl-27429887

ABSTRACT

INTRODUCTION: The use of Top Coal Caving for exploiting the thick coal seam with shallow buried depth most likely has a strong negative impact on the stability. CASE DESCRIPTION: Anjialing No. 1 Underground Mine is located in Shuozhou City, Shanxi Province of China. The 4# Coal Seam of this coal mine is the thick coal seam with shallow buried depth, which has the thickness of 12 m and the depth of 180 m in average. This paper focuses on predicting the distribution of ground fissures and water-conducted fissures induced by the exploiting of the 4# Coal Seam. DISCUSSION AND EVALUATION: We first create a 3D computational model, and then use FLAC[Formula: see text] software to simulate the mining of coal seam. We then calculate the displacements and tensile strain of the ground surface and strata, and predict the distribution of the ground fissures and water-conducted fissures. Finally, we further analyze the possibility of the perviousness and air leakage of the coal mine on the basis of the predicted distribution of fissures. CONCLUSIONS: The prediction results indicate that: (1) the water-conducted fissures are strongly developed and go through the Neogene aquifuge in some region; thus, it may lead to potential perviousness of coal mine; (2) part of these water-conducted fissures connect with the ground fissures; and this behavior may cause the risk of air leakage.

SELECTION OF CITATIONS
SEARCH DETAIL
...