Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 537
Filter
1.
World Neurosurg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821403

ABSTRACT

OBJECTIVE: To summarize the preliminary application experience of intraoperative ultrasound with burr hole probe in minimally invasive neurosurgery and to explore its application value. METHODS: 29 patients who underwent intraoperative ultrasound guided puncture with burr hole probe in our center from August 2018 to November 2023 were collected, including 15 cases of ventriculoperitoneal shunt operation, 5 cases of assisted stereotactic needle biopsy, 3 cases of intracranial pressure probe implantation in lateral ventricle, 3 cases of brain abscess puncture for external drainage, and 3 cases of intracranial cyst puncture and peritoneal drainage. During the procedures, the burr hole probe was used to locate the intracranial targets and guide the puncture. The postoperative CT scans or combined postoperative pathological results could verify the accuracy of puncture. In addition, the intervention effect and recovery status of patients were also recorded. RESULTS: The intraoperative ultrasound with burr hole probe could clearly display all the purposed targets and accurately guide the puncture procedures in all cases. All patients achieved satisfactory diagnostic and therapeutic results without new neurological dysfunction and serious complications. CONCLUSIONS: The intraoperative ultrasound with burr hole probe is an effective device for demonstrating intracranial structures. It not only enables minimally invasive and precise diagnosis or treatment of many neurosurgical diseases, but also is simple and safe to operate, which has important promotional value in the neurosurgery.

2.
Plant Cell ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801738

ABSTRACT

Virus-induced drought tolerance presents a fascinating facet of biotic-abiotic interaction in plants, yet its molecular intricacies remain unclear. Our study shows that cowpea mild mottle virus (CPMMV) infection enhances drought tolerance in common bean (Phaseolus vulgaris) plants through a virus-derived small interfering RNA (vsiRNA)-activated autophagy pathway. Specifically, a 21-bp vsiRNA originating from the CPMMV Triple Gene Block1 (TGB1) gene targeted the 5' untranslated region (UTR) of the host Teosinte branched 1, Cycloidea, Proliferating Cell Factor (TCP) transcription factor gene PvTCP2, independent of the known role of TGB1 as an RNA silencing suppressor. This targeting attenuated the expression of PvTCP2, which encodes a transcriptional repressor, and in turn upregulated the core autophagy-related gene (ATG) PvATG8c, leading to activated autophagy activity surpassing the level induced by drought or CPMMV infection alone. The downstream EARLY RESPONSIVE TO DEHYDRATION (ERD) effector PvERD15 is a homologue of Arabidopsis thaliana AtERD15, which positively regulates stomatal aperture. PvERD15 was degraded in PvATG8c-mediated autophagy. Therefore, we establish a TGB1-PvTCP2-PvATG8c-PvERD15 module as a trans-kingdom fine-tuning mechanism that contributes to virus-induced drought tolerance in plant-drought-virus interactions.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124461, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38759393

ABSTRACT

Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.


Subject(s)
Esophageal Neoplasms , Machine Learning , Spectrum Analysis, Raman , Support Vector Machine , Spectrum Analysis, Raman/methods , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Humans , Discriminant Analysis , Principal Component Analysis , Algorithms
5.
J Eye Mov Res ; 17(1)2024.
Article in English | MEDLINE | ID: mdl-38699659

ABSTRACT

Objectives To find out the prevalence rate of pre-myopia among primary school students in the Mianyang Science City Area, analyze its related risk factors, and thus provide a reference for local authorities to formulate policies on the prevention and control of myopia for primary school students. Methods From September to October 2021, Cluster sampling was adopted by our research group to obtain the vision levels of primary school students employing a diopter test in the Science City Area. In addition, questionnaires were distributed to help us find the risk factors associated with pre-myopia. Through the statistical analysis, we identify the main risk factors for pre-myopia and propose appropriate interventions. Results The prevalence rate of pre-myopia among primary school students in the Science City Area was 45.27% (1020/2253), of which 43.82% were boys and 46.92% were girls, with no statistically significant difference in the prevalence rate of myopia between boys and girls (2 =2.171, P=0.141). The results of the linear trend test showed that the prevalence rate of pre-myopia tends to decrease with increasing age (Z=296.521, P=0.000). Logistic regression analysis demonstrated that the main risk factors for pre-myopia were having at least one parent with myopia, spending less than 2 hours a day outdoors, using the eyes continuously for more than 1 hour, looking at electronic screens for more than 2 hours, and having an improper reading and writing posture. Conclusion The Science City Area has a high prevalence rate of pre-myopia among primary school students. It is proposed that students, schools, families, and local authorities work together to increase the time spent outdoors, reduce digital screens and develop scientific use of eye habits.

6.
J Anim Sci Technol ; 66(1): 178-203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38618031

ABSTRACT

Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.

7.
Methods Mol Biol ; 2787: 55-68, 2024.
Article in English | MEDLINE | ID: mdl-38656481

ABSTRACT

This chapter presents the application of Plantarray, a high-throughput platform commercially available for noninvasive monitoring of plant functional physiology phenotyping (FPP). The platform continuously measures water flux in the soil-plant-atmosphere for each plant in dynamic environments. To better interpret the massive phenotypic data acquired with FPP, several quantitative analysis methods were demonstrated for various types of data. Simple mathematical models were utilized to fit characteristic parameters of plant transpiration response to drought stress. Additionally, ecophysiological models were employed to quantify the sensitivity of transpiration to radiation and vapor pressure deficit (VPD) as component traits and predict more complex higher-order traits. The established protocols provide a tangible tool for integrating FPP and model analysis to address complex traits.


Subject(s)
Phenotype , Plant Physiological Phenomena , Plant Transpiration/physiology , Droughts , Water , Stress, Physiological
8.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 113-117, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678616

ABSTRACT

Burn as physical injury ranks as the fourth most prevalent trauma across the world. In this study, we aimed to compare the impact of gasoline burn and chromic acid burn on the internal organs and immune functions in rats. The results showed that the levels of methemoglobin (MHb) to total hemoglobin (Hb) as well as the Cr6+ content showed significant elevation in the chromic acid burn group relative to the gasoline burn group. HE staining was used to evaluate the histological changes in the injured tissues as well as the tissues excised from internal organs. We found that chromic acid burn-induced more severe damage to rat tissues. Gasoline burn showed no significant impact on the intestinal tissues of rats, while the chromic acid burn-induced increased cell death in rat intestines. Moreover, the results of HE staining also revealed that gasoline burn and chromic acid burn showed no evident impact on rat hearts. Gasoline burn also showed no significant effects on the liver, lungs and kidneys of rats, while the chromic acid burn caused injuries to such internal organs in comparison with the control and gasoline burn groups. In addition, the MPO activity was higher in the liver, intestine, lungs and kidneys of rats with chromic acid burn. Furthermore, the expression of inflammation response cytokines was examined in the serum of rats. The results demonstrated that the levels of IL-6, IL-1ß and TNF-α showed a significant increase in both the gasoline burn and chromic acid burn groups of rats relative to the control, and the levels were higher in the chromic acid burn group in comparison with the gasoline burn group. In conclusion, the chromic acid burn-induced more severe organ injury, inflammation and immune response compared with the gasoline burn, which may provide reference data for the clinical treatment of patients with different burn injuries.


Subject(s)
Gasoline , Animals , Male , Rats , Liver/pathology , Liver/drug effects , Liver/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology , Rats, Sprague-Dawley , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Cytokines/metabolism , Cytokines/blood , Burns, Chemical/pathology , Burns, Chemical/metabolism , Burns, Chemical/immunology , Peroxidase/metabolism , Inflammation/pathology
9.
J Hazard Mater ; 471: 134436, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688221

ABSTRACT

Membrane distillation (MD) has received ample recognition for treating complex wastewater, including hypersaline oil and gas (O&G) produced water (PW). Rigorous water quality assessment is critical in evaluating PW treatment because PW consists of numerous contaminants beyond the targets listed in general discharge and reuse standards. This study evaluated a novel photocatalytic membrane distillation (PMD) process, with and without a UV light source, against a standard vacuum membrane distillation (VMD) process for treating PW, utilizing targeted analyses and a non-targeted chemical identification workflow coupled with toxicity predictions. PMD with UV light resulted in better removals of dissolved organic carbon, ammoniacal nitrogen, and conductivity. Targeted organic analyses identified only trace amounts of acetone and 2-butanone in distillates. According to non-targeted analysis, the number of suspects reduced from 65 in feed to 25-30 across all distillate samples. Certain physicochemical properties of compounds influenced contaminant rejection in different MD configurations. According to preliminary toxicity predictions, VMD, PMD with and without UV distillate samples, respectively contained 21, 22, and 23 suspects associated with critical toxicity concerns. Overall, non-targeted analysis together with toxicity prediction provides a competent supportive tool to assess treatment efficiency and potential impacts on public health and the environment during PW reuse.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124086, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38442618

ABSTRACT

Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.


Subject(s)
Deep Learning , Hydroquinones , Metal Nanoparticles , Antioxidants/chemistry , Gold , Butylated Hydroxyanisole/analysis , Butylated Hydroxyanisole/chemistry , Propyl Gallate/analysis , Oils
11.
Cancer Immunol Immunother ; 73(5): 91, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554157

ABSTRACT

BACKGROUND: Accumulation studies found that tumor-associated macrophages (TAMs) are a predominant cell in tumor microenvironment (TME), which function essentially during tumor progression. By releasing bioactive molecules, including circRNA, small extracellular vesicles (sEV) modulate immune cell functions in the TME, thereby affecting non-small cell lung cancer (NSCLC) progression. Nevertheless, biology functions and molecular mechanisms of M2 macrophage-derived sEV circRNAs in NSCLC are unclear. METHODS: Cellular experiments were conducted to verify the M2 macrophage-derived sEV (M2-EV) roles in NSCLC. Differential circRNA expression in M0 and M2-EV was validated by RNA sequencing. circFTO expression in NSCLC patients and cells was investigated via real-time PCR and FISH. The biological mechanism of circFTO in NSCLC was validated by experiments. Our team isolated sEV from M2 macrophages (M2Ms) and found that M2-EV treatment promoted NSCLC CP, migration, and glycolysis. RESULTS: High-throughput sequencing found that circFTO was highly enriched in M2-EV. FISH and RT-qPCR confirmed that circFTO expression incremented in NSCLC tissues and cell lines. Clinical studies confirmed that high circFTO expression correlated negatively with NSCLC patient survival. Luciferase reporter analysis confirmed that miR-148a-3p and PDK4 were downstream targets of circFTO. circFTO knockdown inhibited NSCLC cell growth and metastasis in in vivo experiments. Downregulating miR-148a-3p or overexpressing PDK4 restored the malignancy of NSCLC, including proliferation, migration, and aerobic glycolysis after circFTO silencing. CONCLUSION: The study found that circFTO from M2-EV promoted NSCLC cell progression and glycolysis through miR-148a-3p/PDK4 axis. circFTO is a promising prognostic and diagnostic NSCLC biomarker and has the potential to be a candidate NSCLC therapy target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Lung Neoplasms/pathology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Tumor Microenvironment
12.
J Sci Food Agric ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437455

ABSTRACT

BACKGROUND: The alteration of chromatin accessibility plays an important role in plant responses to abiotic stress. Carbon-based nanomaterials (CBNMs) have attracted increasing interest in agriculture due to their potential impact on crop productivity, showcasing effects on plant biological processes at transcriptional levels; however, their impact on chromatin accessibility remains unknown. RESULTS: This study found that fullerenol can penetrate the seed coat of pea to mitigate the reduction of seed germination caused by osmotic stress. RNA sequencing (RNA-seq) revealed that the application of fullerenol caused the high expression of genes related to oxidoreduction to return to a normal level. Assay for transposase accessible chromatin sequencing (ATAC-seq) confirmed that fullerenol application reduced the overall levels of chromatin accessibility of numerous genes, including those related to environmental signaling, transcriptional regulation, and metabolism. CONCLUSION: This study suggests that fullerenol alleviates osmotic stress on various fronts, encompassing antioxidant, transcriptional, and epigenetic levels. This advances knowledge of the working mechanism of this nanomaterial within plant cells. © 2024 Society of Chemical Industry.

13.
Front Cell Dev Biol ; 12: 1340308, 2024.
Article in English | MEDLINE | ID: mdl-38298216

ABSTRACT

Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.

14.
Gels ; 10(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38391472

ABSTRACT

The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions.

15.
Biochem Genet ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367128

ABSTRACT

The global prevalence of iron deficiency-induced "hidden hunger" highlights a critical health concern, underscoring the pressing need to improve iron nutrition through safe and efficient means, such as increasing iron intake from plant-based foods. Yellow Stripe-Like (YSL) genes play a crucial role in long-distance iron transport between source and sink tissues in plants. Here, we report on the analysis of YSL family genes in the common bean (Phaseolus vulgaris L.), an iron-rich legume crop. We identified 9 YSL genes in the common bean genome using BLAST and HMM methods. Gene duplication analysis revealed that PvYSL7a and PvYSL7b originated through tandem duplication events. Structural analysis noted an absence of conservative motifs in PvYSL3b and PvYSL7a, which led to distinct predicted 3D protein structures. Leveraging publicly available RNA-seq data from developing bean pods, the expression patterns of PvYSL genes alongside pod and seed development were analyzed. Notably, PvYSL7a and PvYSL7b, as well as PvYSL1a and PvYSL1b, exhibited diverged expression patterns in seeds, signifying their functional divergence in this tissue. Moreover, PvYSL3a and PvYSL3b exhibited divergent expression patterns in both pod walls and seeds during pod development, underscoring their distinct roles in facilitating iron transportation between pods and seeds. This study provides valuable insights into the gene regulatory basis of iron accumulation in bean pods and seeds.

16.
Comput Biol Med ; 170: 107916, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237237

ABSTRACT

In the medical field, the application of machine learning technology in the automatic diagnosis and monitoring of osteoporosis often faces challenges related to domain adaptation in drug therapy research. The existing neural networks used for the diagnosis of osteoporosis may experience a decrease in model performance when applied to new data domains due to changes in radiation dose and equipment. To address this issue, in this study, we propose a new method for multi domain diagnostic and quantitative computed tomography (QCT) images, called DeepmdQCT. This method adopts a domain invariant feature strategy and integrates a comprehensive attention mechanism to guide the fusion of global and local features, effectively improving the diagnostic performance of multi domain CT images. We conducted experimental evaluations on a self-created OQCT dataset, and the results showed that for dose domain images, the average accuracy reached 91%, while for device domain images, the accuracy reached 90.5%. our method successfully estimated bone density values, with a fit of 0.95 to the gold standard. Our method not only achieved high accuracy in CT images in the dose and equipment fields, but also successfully estimated key bone density values, which is crucial for evaluating the effectiveness of osteoporosis drug treatment. In addition, we validated the effectiveness of our architecture in feature extraction using three publicly available datasets. We also encourage the application of the DeepmdQCT method to a wider range of medical image analysis fields to improve the performance of multi-domain images.


Subject(s)
Osteoporosis , Humans , Osteoporosis/diagnostic imaging , Bone Density , Tomography, X-Ray Computed , Computers , Machine Learning , Image Processing, Computer-Assisted
17.
J Virol ; 98(1): e0165423, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169290

ABSTRACT

Jeilongviruses are emerging single-stranded negative-sense RNA viruses in the Paramyxoviridae family. Tailam paramyxovirus (TlmPV) is a Jeilongvirus that was identified in 2011. Very little is known about the mechanisms that regulate viral replication in these newly emerging viruses. Among the non-structural viral proteins of TlmPV, the C protein is predicted to be translated from an open reading frame within the phosphoprotein gene through alternative translation initiation. Though the regulatory roles of C proteins in virus replication of other paramyxoviruses have been reported before, the function of the TlmPV C protein and the relevant molecular mechanisms have not been reported. Here, we show that the C protein is expressed in TlmPV-infected cells and negatively modulates viral RNA replication. The TlmPV C protein interacts with the P protein, negatively impacting the interaction between N and P, resulting in inhibition of viral RNA replication. Deletion mutagenesis studies indicate that the 50 amino-terminal amino acid residues of the C protein are dispensable for its inhibition of virus RNA replication and interaction with the P protein.IMPORTANCETailam paramyxovirus (TlmPV) is a newly identified paramyxovirus belonging to the Jeilongvirus genus, of which little is known. In this work, we confirmed the expression of the C protein in TlmPV-infected cells, assessed its function, and defined a potential mechanism of action. This is the first time that the existence of a Jeilongvirus C protein has been confirmed and its role in viral replication has been reported.


Subject(s)
Paramyxovirinae , Viral Proteins , Virus Replication , Paramyxovirinae/genetics , Paramyxovirinae/physiology , RNA, Viral/genetics , Viral Proteins/genetics , Animals , Cricetinae , Cell Line
18.
ACS Nano ; 18(4): 2800-2814, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227969

ABSTRACT

The development of a radioresponsive delivery platform has led to an innovative combination radioimmunotherapy strategy for treating tumors. However, controlling the release of immunomodulators by local radiotherapy in vivo remains a significant challenge in order to minimize off-target toxicity, reduce radiation-induced immunosuppression, and maximize synergistic radioimmunotherapy efficacy. In this study, we report the development of core-cross-linked diselenide nanoparticles (dSeNPs) as carriers for radioresponsive delivery of the toll-like receptors 7/8 agonist through systemic administration to achieve combined radioimmunotherapy of tumors. The dSeNPs were fabricated from a ring-opening reaction between 2,2'-diselenidebis(ethylamine) and the ethylene oxide group of an amphiphilic block copolymer. The diselenide bonds were naturally protected in the core of the self-assembled nanostructure, making the dSeNPs extremely stable in the physiological environment. However, they exhibited dose- and time-dependent radiosensitivity, meaning that X-ray irradiation could spatiotemporally control the release of R848 from the dSeNPs. In vivo results showed that local radioresponsive R848 release from dSeNPs greatly improved the synergistic efficacy of combined radioimmunotherapy via the programmed cooperative immune system activation process. This process included macrophage polarization, dendritic cell maturation, and cytotoxic T cell activation. Our findings suggest that core-cross-linked dSeNPs are a promising platform for combined radiotherapy due to their spatiotemporal controllability of radioresponsive drug release.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Toll-Like Receptor 7/agonists , Radioimmunotherapy , Neoplasms/drug therapy , Adjuvants, Immunologic , Nanoparticles/chemistry
19.
Int J Biol Macromol ; 259(Pt 2): 129265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218292

ABSTRACT

The flame retardants and electromagnetic interference (EMI) shielding performance were enhanced by using imidazolium-functionalized polyurethane (IPU) modified multi-walled carbon nanotubes (CNTs) and ammonium polyphosphate (APP) for polylactic acid (PLA)/polycaprolactone (PCL) composites. The PLA/PCL/10APP/8CNT/1.6IPU composite containing 10 wt% APP and 8 wt% imidazolium modified CNTs reached the limiting oxygen index (LOI) value of 30.3 % and passed the V-0 rating in UL-94 tests. Moreover, the peak of the heat release rate (pHRR) and total heat release (THR) for this composite reached around 302 kW/m2 and 64 KJ/m2, which were decreased by 39.1 % and 15.8 % compared with that of PLA/PCL/10APP composite. The improved flame retardancy was attributed to the interplay of catalytic, barrier, and condensed char forming of imidazolium-modified CNTs and APP. IPU catalyzed the charring effect of the polymer matrix during combustion and regulated the migration of more CNTs to disperse at the two-phase interface. The dispersion of imidazolium-modified CNTs and co-continuous phase structure of the composites can establish continuous conductive pathways. The PLA/PCL/APP/CNT/IPU composite obtained a higher conductivity compared to the PLA/PCL/APP/CNT composite and whose EMI SE reached 33.9 dB, which is a promising candidate for next-generation sustainable and protective plastics.


Subject(s)
Caproates , Flame Retardants , Lactones , Nanotubes, Carbon , Polyesters , Catalysis , Electric Conductivity , Polyphosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...