Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(10)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625743

ABSTRACT

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Subject(s)
Homeostasis , Lipid Metabolism , Purkinje Cells , Sorting Nexins , Sorting Nexins/metabolism , Sorting Nexins/genetics , Animals , Mice , Humans , Purkinje Cells/metabolism , Purkinje Cells/pathology , Disease Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Mice, Knockout , Cerebellum/metabolism , Cerebellum/pathology , Male , Lipid Droplets/metabolism
2.
Methods Enzymol ; 689: 433-452, 2023.
Article in English | MEDLINE | ID: mdl-37802582

ABSTRACT

Stable isotope dilution (SID) methodology coupled with liquid chromatography-tandem mass spectrometry (LC-MS) is rapidly becoming the gold standard for measuring estrogens in serum and plasma due to improved specificity, high accuracy, and the ability to conduct a more comprehensive analysis. A general consideration of the problems associated with measuring estrogens and two detailed derivatization methods are described in this chapter. These methods quantify estrogens and their metabolites in serum and plasma samples using this state-of-art technology, which is applicable to the routine clinical laboratory.


Subject(s)
Estrogens , Tandem Mass Spectrometry , Estrogens/analysis , Estrogens/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Immunologic Factors
3.
Breast Cancer Res ; 25(1): 1, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36597146

ABSTRACT

BACKGROUND: Breast cancer mortality is principally due to recurrent disease that becomes resistant to therapy. We recently identified copy number (CN) gain of the putative membrane progesterone receptor PAQR8 as one of four focal CN alterations that preferentially occurred in recurrent metastatic tumors compared to primary tumors in breast cancer patients. Whether PAQR8 plays a functional role in cancer is unknown. Notably, PAQR8 CN gain in recurrent tumors was mutually exclusive with activating ESR1 mutations in patients treated with anti-estrogen therapies and occurred in > 50% of both patients treated with anti-estrogen therapies and those treated with chemotherapy or anti-Her2 agents. METHODS: We used orthotopic mouse models to determine whether PAQR8 overexpression or deletion alters breast cancer dormancy or recurrence following therapy. In vitro studies, including assays for colony formation, cell viability, and relative cell fitness, were employed to identify effects of PAQR8 in the context of therapy. Cell survival and proliferation were quantified by immunofluorescence staining for markers of apoptosis and proliferation. Sphingolipids were quantified by liquid chromatography-high resolution mass spectrometry. RESULTS: We show that PAQR8 is necessary and sufficient for efficient mammary tumor recurrence in mice, spontaneously upregulated and CN gained in recurrent tumors that arise following therapy in multiple mouse models, and associated with poor survival following recurrence as well as poor overall survival in breast cancer patients. PAQR8 promoted resistance to therapy by enhancing tumor cell survival following estrogen receptor pathway inhibition by fulvestrant or estrogen deprivation, Her2 pathway blockade by lapatinib or Her2 downregulation, and treatment with chemotherapeutic agents. Pro-survival effects of PAQR8 were mediated by a Gi protein-dependent reduction in cAMP levels, did not require progesterone, and involved a PAQR8-dependent decrease in ceramide levels and increase in sphingosine-1-phosphate levels, suggesting that PAQR8 may possess ceramidase activity. CONCLUSIONS: Our data provide in vivo evidence that PAQR8 plays a functional role in cancer, implicate PAQR8, cAMP, and ceramide metabolism in breast cancer recurrence, and identify a novel mechanism that may commonly contribute to the acquisition of treatment resistance in breast cancer patients.


Subject(s)
Drug Resistance, Neoplasm , Neoplasm Recurrence, Local , Animals , Mice , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Lapatinib , Fulvestrant , Receptor, ErbB-2/metabolism , Estrogens , Receptors, Progesterone
4.
PNAS Nexus ; 1(3): pgac142, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36016708

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by the deficiency of mitochondrial protein frataxin, which plays a crucial role in iron-sulphur cluster formation and ATP production. The cellular function of frataxin is not entirely known. Here, we demonstrate that frataxin controls ketone body metabolism through regulation of 3-Oxoacid CoA-Transferase 1 (OXCT1), a rate limiting enzyme catalyzing the conversion of ketone bodies to acetoacetyl-CoA that is then fed into the Krebs cycle. Biochemical studies show a physical interaction between frataxin and OXCT1 both in vivo and in vitro. Frataxin overexpression also increases OXCT1 protein levels in human skin fibroblasts while frataxin deficiency decreases OXCT1 in multiple cell types including cerebellum and skeletal muscle both acutely and chronically, suggesting that frataxin directly regulates OXCT1. This regulation is mediated by frataxin-dependent suppression of ubiquitin-proteasome system (UPS)-dependent OXCT1 degradation. Concomitantly, plasma ketone bodies are significantly elevated in frataxin deficient knock-in/knockout (KIKO) mice with no change in the levels of other enzymes involved in ketone body production. In addition, ketone bodies fail to be metabolized to acetyl-CoA accompanied by increased succinyl-CoA in vitro in frataxin deficient cells, suggesting that ketone body elevation is caused by frataxin-dependent reduction of OXCT1 leading to deficits in tissue utilization of ketone bodies. Considering the potential role of metabolic abnormalities and deficiency of ATP production in FRDA, our results suggest a new role for frataxin in ketone body metabolism and also suggest modulation of OXCT1 may be a potential therapeutic approach for FRDA.

5.
J Lipid Res ; 63(9): 100255, 2022 09.
Article in English | MEDLINE | ID: mdl-35850241

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and ß-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.


Subject(s)
Friedreich Ataxia , 3-Hydroxybutyric Acid , Adenine/metabolism , Carnitine/metabolism , Ceramides/metabolism , Coenzyme A/metabolism , Fibroblasts/metabolism , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Guanine/metabolism , Humans , Iron/metabolism , Phosphatidylglycerols , Sulfur/metabolism , Triglycerides/metabolism
6.
J Lipid Res ; 63(6): 100224, 2022 06.
Article in English | MEDLINE | ID: mdl-35568254

ABSTRACT

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.


Subject(s)
Carbon , Propionates , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Animals , Carbon/metabolism , Liver/metabolism , Mice , Oxidation-Reduction
7.
Syst Biol Reprod Med ; 68(1): 36-43, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34962441

ABSTRACT

Cumulus cell (CC) clumps that associate with oocytes provide the oocytes with growth and signaling factors. Thus, the metabolism of the CCs may influence oocyte function, and CC metabolism may be predictive of oocyte competence for in vitro fertilization. CCs are thought to be highly glycolytic, but data on the use of other potential carbon substrates are lacking in humans. This prospective and blinded cohort study was designed to examine the substrate utilization of CCs by age and oocyte competence. Individual sets of CC clumps from participants were removed after oocyte retrieval procedure then, incubated with stable isotope labeled substrates, and analyzed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for isotopologue enrichment of major metabolic intermediates, including acetyl-CoA. The acyl-chain of acetyl-CoA contains 2 carbons that can be derived from 13C-labeled substrates resulting in an M + 2 isotopologue that contains 2 13C atoms. Comparing the fate of three major carbon sources, mean enrichment of M + 2 acetyl-CoA (mean, standard deviation) was for glucose (3.6, 7.7), for glutamine (9.4, 6.2), and for acetate (20.7, 13.9). Due to this unexpected high and variable labeling from acetate, we then examined acetyl-CoA mean % enrichment from acetate in 278 CCs from 21 women ≤34 (49.06, 12.73) decreased with age compared to 124 CCs from 10 women >34 (43.48, 16.20) (p = 0.0004, t-test). The CCs associated with the immature prophase I oocytes had significantly lower enrichment in M + 2 acetyl CoA compared to the CCs associated with the metaphase I and metaphase II oocytes (difference: -6.02, CI: -1.74,-13.79, p = 0.013). Acetate metabolism in individual CC clumps was positively correlated with oocyte maturity and decreased with maternal age. These findings indicate that CC metabolism of non-glucose substrates should be investigated relative to oocyte function and age-related fertility.Abbreviations: CCs: cumulus cells; COC: cumulus-oocyte complex; LC-MS: liquid chromatography-mass spectrometry; acetyl-CoA: acetyl-Coenzyme A; CoA: Coenzyme A.


Subject(s)
Cumulus Cells , Oocytes , Acetates , Acetyl Coenzyme A , Cohort Studies , Female , Humans , Maternal Age , Prospective Studies
8.
Bioanalysis ; 13(13): 1037-1049, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34110924

ABSTRACT

Aim: Plasma and serum are widely used blood-derived biofluids for metabolomics and lipidomics assays, but analytes that are present in high concentrations in blood cells cannot be evaluated in those samples and isolating serum or plasma could introduce additional variability in the data. Materials & methods: In this study, we provide a comprehensive method for quantification of the whole blood (WB) sphingolipidome, combining a single-phase extraction method with LC-high-resolution mass spectrometry. Results: We were able to quantify more than 150 sphingolipids, and when compared with paired plasma, WB contained higher concentration of most sphingolipids and individual variations were lower. These findings suggest that WB could be a better alternative to plasma, and potentially guide the evaluation of the sphingolipidome for biomarker discovery.


Lay abstract Whole blood (WB) is a mixture of different cellular and acellular components including red blood cells, white blood cells, platelets and plasma. Ceramides, one class of sphingolipids, have been reported as promising biomarkers of cardiac events and several other pathologies, but their plasma concentrations vary depending on diet, time of day and other factors. In this study, we established a comprehensive method for the quantification of the WB sphingolipidome. We were able to quantify more than 150 sphingolipids, and when compared with paired plasma, WB contained higher concentration of most sphingolipids and individual variations were lower. These findings suggest that WB could be a better alternative to plasma, and potentially guide the evaluation of new biomarker discovery.


Subject(s)
Chromatography, Liquid/methods , Lipidomics/methods , Mass Spectrometry/methods , Sphingolipids/blood , Sphingolipids/classification , Adult , Alkalies , Butanols , Female , Humans , Hydrolysis , Male , Methyl Ethers , Plasma/chemistry
9.
Mol Cell Proteomics ; 20: 100094, 2021.
Article in English | MEDLINE | ID: mdl-33991687

ABSTRACT

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.


Subject(s)
Cardiomyopathies/metabolism , Friedreich Ataxia/metabolism , Retinoids/metabolism , Adolescent , Adult , Aged , Aldehyde Oxidoreductases/metabolism , Biomarkers/metabolism , Cells, Cultured , Female , Fibroblasts/metabolism , Humans , Iron-Binding Proteins/metabolism , Male , Middle Aged , Protein Array Analysis , Proteomics , Young Adult , Frataxin
10.
Am J Epidemiol ; 190(2): 265-276, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33524118

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are critical for brain development and have been linked with neurodevelopmental outcomes. We conducted a population-based case-control study in California to examine the association between PUFAs measured in midpregnancy serum samples and autism spectrum disorder (ASD) in offspring. ASD cases (n = 499) were identified through the California Department of Developmental Services and matched to live-birth population controls (n = 502) on birth month, year (2010 or 2011), and sex. Logistic regression models were used to examine crude and adjusted associations. In secondary analyses, we examined ASD with and without co-occurring intellectual disability (ID; n = 67 and n = 432, respectively) and effect modification by sex and ethnicity. No clear patterns emerged, though there was a modest inverse association with the top quartile of linoleic acid level (highest quartile vs. lowest: adjusted odds ratio = 0.74, 95% confidence interval: 0.49, 1.11; P for trend = 0.10). Lower levels of total and ω-3 PUFAs were associated with ASD with ID (lowest decile of total PUFAs vs. deciles 4-7: adjusted odds ratio = 2.78, 95% confidence interval: 1.13, 6.82) but not ASD without ID. We did not observe evidence of effect modification by the factors examined. These findings do not suggest a strong association between midpregnancy PUFA levels and ASD. In further work, researchers should consider associations with ASD with ID and in other time windows.


Subject(s)
Autism Spectrum Disorder/epidemiology , Fatty Acids, Unsaturated/blood , Intellectual Disability/epidemiology , Pregnancy Trimester, Second/blood , Autism Spectrum Disorder/ethnology , Birth Weight , California/epidemiology , Case-Control Studies , Child , Child, Preschool , Female , Gestational Age , Humans , Intellectual Disability/ethnology , Male , Odds Ratio , Pregnancy , Sex Factors , Socioeconomic Factors
11.
Sci Rep ; 10(1): 15788, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978498

ABSTRACT

Mature frataxin is essential for the assembly of iron-sulfur cluster proteins including a number of mitochondrial enzymes. Reduced levels of mature frataxin (81-20) in human subjects caused by the genetic disease Friedreich's ataxia results in decreased mitochondrial function, neurodegeneration, and cardiomyopathy. Numerous studies of mitochondrial dysfunction have been conducted using mouse models of frataxin deficiency. However, mouse frataxin that is reduced in these models, is assumed to be mature frataxin (78-207) by analogy with human mature frataxin (81-210). Using immunoaffinity purification coupled with liquid chromatography-high resolution tandem mass spectrometry, we have discovered that mature frataxin in mouse heart (77%), brain (86%), and liver (47%) is predominantly a 129-amino acid truncated mature frataxin (79-207) in which the N-terminal lysine residue has been lost. Mature mouse frataxin (78-207) only contributes 7-15% to the total frataxin protein present in mouse tissues. We have also found that truncated mature frataxin (79-207) is present primarily in the cytosol of mouse liver; whereas, frataxin (78-207) is primarily present in the mitochondria. These findings, which provide support for the role of extra-mitochondrial frataxin in the etiology of Friedreich's ataxia, also have important implications for studies of mitochondrial dysfunction conducted in mouse models of frataxin deficiency.


Subject(s)
Disease Models, Animal , Friedreich Ataxia/pathology , Iron-Binding Proteins/metabolism , Mitochondria/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Heart/physiology , Humans , Iron-Binding Proteins/genetics , Liver/metabolism , Mice , Mitochondria/genetics , Frataxin
12.
Mol Metab ; 30: 61-71, 2019 12.
Article in English | MEDLINE | ID: mdl-31767181

ABSTRACT

OBJECTIVE: The dynamic regulation of metabolic pathways can be monitored by stable isotope tracing. Yet, many metabolites are part of distinct processes within different subcellular compartments. Standard isotope tracing experiments relying on analyses in whole cells may not accurately reflect compartmentalized metabolic processes. Analysis of compartmentalized metabolism and the dynamic interplay between compartments can potentially be achieved by stable isotope tracing followed by subcellular fractionation. Although it is recognized that metabolism can take place during biochemical fractionation of cells, a clear understanding of how such post-harvest metabolism impacts the interpretation of subcellular isotope tracing data and methods to correct for this are lacking. We set out to directly assess artifactual metabolism, enabling us to develop and test strategies to correct for it. We apply these techniques to examine the compartment-specific metabolic kinetics of 13C-labeled substrates targeting central metabolic pathways. METHODS: We designed a stable isotope tracing strategy to interrogate post-harvest metabolic activity during subcellular fractionation using liquid chromatography-mass spectrometry (LC-MS). RESULTS: We show that post-harvest metabolic activity occurs rapidly (within seconds) upon cell harvest. With further characterization we reveal that this post-harvest metabolism is enzymatic and reflects the metabolic capacity of the sub-cellular compartment analyzed, but it is limited in the extent of its propagation into downstream metabolites in metabolic pathways. We also propose and test a post-labeling strategy to assess the amount of post-harvest metabolism occurring in an experiment and then to adjust data to account for this. We validate this approach for both mitochondrial and cytosolic metabolic analyses. CONCLUSIONS: Our data indicate that isotope tracing coupled with sub-cellular fractionation can reveal distinct and dynamic metabolic features of cellular compartments, and that confidence in such data can be improved by applying a post-labeling correction strategy. We examine compartmentalized metabolism of acetate and glutamine and show that acetyl-CoA is turned over rapidly in the cytosol and acts as a pacemaker of anabolic metabolism in this compartment.


Subject(s)
Metabolic Networks and Pathways/physiology , Metabolomics/methods , Subcellular Fractions/metabolism , Acetyl Coenzyme A/metabolism , Animals , Cell Compartmentation , Cell Line , Chromatography, Liquid/methods , Fibroblasts , Hep G2 Cells , Humans , Isotope Labeling/methods , Kinetics , Mass Spectrometry/methods , Mice
14.
Nat Immunol ; 20(9): 1186-1195, 2019 09.
Article in English | MEDLINE | ID: mdl-31384058

ABSTRACT

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


Subject(s)
Glucose/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Acetyl Coenzyme A/biosynthesis , Acetylation , Animals , Female , Histones/metabolism , Inflammation/pathology , Lipopolysaccharides , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
15.
PLoS One ; 14(2): e0211821, 2019.
Article in English | MEDLINE | ID: mdl-30785914

ABSTRACT

OBJECTIVE: Cancer diagnosis during pregnancy occurs in 1 out of 1000 pregnancies with common malignancies including breast and hematological cancers. Fetal exposure to currently utilized agents is poorly described. We directly assessed fetal exposure by screening meconium from 23 newborns whose mothers had undergone treatment for cancer during pregnancy. STUDY DESIGN: Meconium was collected from newborns whose mothers were diagnosed with cancer during pregnancy and underwent chemotherapy in the second or third trimester as part of the Cancer and Pregnancy Registry. We conducted screening of 23 meconium samples for chemotherapeutics and known metabolites of chemotherapeutics by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Putative identification of paclitaxel and/or its metabolites was made in 8 screened samples. In positively screened samples, we quantified paclitaxel, 3'-p-hydroxypaclitaxel, and 6α-hydroxypaclitaxel by stable isotope dilution-LC-HRMS. RESULTS: Mean (standard deviation) levels of paclitaxel in positively screened samples were 399.9 (248.6) pg/mg in meconium samples from newborn born to mothers that underwent chemotherapy during pregnancy. 3'-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel mean levels were 105.2 (54.6) and 113.4 (48.9) pg/mg meconium, respectively. CONCLUSION: Intact paclitaxel, 3'-p-hydroxypaclitaxel, and 6α-hydroxypaclitaxel were detected in meconium, providing unambiguous confirmation of human fetal exposure. Variability in meconium levels between individuals may indicate a potential for reducing fetal exposure based on timing, dosing, and individual characteristics. This preliminary study may provide an approach for examining the effects of cancer diagnosis during pregnancy on other outcomes by providing a measure of direct fetal exposure.


Subject(s)
Meconium/metabolism , Neoplasms , Paclitaxel , Pregnancy Complications, Neoplastic , Registries , Adult , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , Follow-Up Studies , Humans , Infant, Newborn , Longitudinal Studies , Neoplasms/drug therapy , Neoplasms/metabolism , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Pregnancy , Pregnancy Complications, Neoplastic/drug therapy , Pregnancy Complications, Neoplastic/metabolism , Tandem Mass Spectrometry
16.
Anal Biochem ; 568: 65-72, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30605633

ABSTRACT

Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.


Subject(s)
Deoxyribonucleotides/analysis , Indicator Dilution Techniques , Mass Spectrometry , Carbon Isotopes , Cells, Cultured , Chromatography, Liquid , Deoxyribonucleotides/metabolism , Humans , Isotope Labeling , Nitrogen Isotopes
17.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1434-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286958

ABSTRACT

Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.


Subject(s)
Ubiquitin/chemistry , Amino Acid Substitution , Crystallization , Crystallography, X-Ray , Entropy , Humans , Ubiquitin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...