Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 387: 129702, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604256

ABSTRACT

This study proposes a new model in which ethanol and acetate produced by dark fermentation are processed by Clostridium kluyveri for chain elongation to produce caproate with an addition of biochar prepared from cornstalk residues after acid pretreatment and enzymatic hydrolysis (AERBC) in the dark fermentation and chain elongation processes. The results show a 6-25% increase in hydrogen production in dark fermentation with adding AERBC, and the maximum concentration of caproate in the new model reached 1740 mg/L, 61% higher than that in the control group. In addition, caproate was obtained by dark fermentation, using liquid metabolites as substrates with an initial pH range of 6.5-7.5. Finally, the electron balance and electron transfer efficiency in the new model were analyzed, and the role of AERBC in dark fermentation and chain elongation was investigated. This study provides a new reference for the use of dark-fermented liquid metabolites and cornstalk residue.


Subject(s)
Caproates , Clostridium kluyveri , Hydrogen
2.
J Environ Manage ; 298: 113431, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34352480

ABSTRACT

Nitritation-anammox has been considered to be the most promising process for nitrogen (N) removal from wastewater. However, the anammox reaction still produces an amount of nitrate, which cannot be removed further. This study hypothesizes that heterotrophic denitrification can be an appealing option to remove the residual nitrate in the one-stage nitritation-anammox process. Through monitoring N-removal performance and microbial community succession of a laboratory microaerobic reactor, the effect of four different levels of oxygen supply on nitrate removal was investigated. The reactor was continuously fed with real manure-free piggery wastewater containing ~240 mg NH4+-N/L and chemical oxygen demand (COD)/total nitrogen (TN) ratio of less than 1 for 180 days. With a high influent loading rate of 0.7 kg N/(m3·d), efficient total nitrogen removal (>80 %) was achieved during stable operation of dissolved oxygen (DO) concentrations between 0.3 and 0.6 mg O2/L, indicating N-removal via the nitritation-anammox pathway in the low-carbon wastewater treatment. At the same time, the effluent nitrate reduced with decreased oxygen supply and completely depleted at DO of 0.3 ± 0.1 mg O2/L. In addition to oxygen, preventing ammonia nitrogen from falling to very low levels (<10 mg/L) could be also useful for the complete nitrate removal and stable nitritation-anammox. 16S rRNA gene-based analyses confirmed a complex microbial community including nitrifiers, denitrifiers and anammox bacteria in the biomass of the reactor. Collectively, this study provides new insights into high-level N-removal of a nitritation-anammox process by complete nitrate depletion.


Subject(s)
Denitrification , Nitrates , Bioreactors , Nitrates/analysis , Nitrogen , Oxidation-Reduction , RNA, Ribosomal, 16S , Wastewater
3.
Materials (Basel) ; 13(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977515

ABSTRACT

The effect of ultrasonic temperature on density, microstructure and mechanical properties of vacuum counter-pressure casting ZL114A alloy during solidification was investigated by optical microscopy (OM), scanning electron microscope (SEM) and a tensile test. The results show that compared with the traditional vacuum counter-pressure casting aluminum alloy, the primary phase and eutectic silicon of the alloy with ultrasonic treatment has been greatly refined due to the dendrites broken by ultrasonic vibration. However, the refining effect of ultrasonic treatment on vacuum counter-pressure casting aluminum alloy will be significantly affected by ultrasonic temperature. When the ultrasonic temperature increases from 680 °C to 720 °C, the primary phase is gradually refined, and the morphology of eutectic silicon also changes from coarse needle-like flakes to fine short rods. With a further increase in the ultrasonic temperature, the microstructure will coarse again. The tensile strength and elongation of vacuum counter-pressure casting ZL114A alloy increases first and then decreases with the increase of ultrasonic temperature. The optimal mechanical properties were achieved with tensile strength of 327 MPa and the elongation of 5.57% at ultrasonic temperature of 720 °C, which is 6.3% and 8.2%, respectively, higher than that of alloy without ultrasonic treatment.

4.
Micromachines (Basel) ; 10(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547458

ABSTRACT

Biofilms exist in the natural world and applied to many industries. However, due to the variety of characteristics caused by their complex components, biofilms can also lead to membrane fouling and recurrent infections which pose threats to human health. So, to make the best use of their advantages and avoid their disadvantages, knowing the best time and methods for improving or preventing biofilm formation is important. In situ observation without fluorescence labeling in microscale and according to a time scale is useful to research biofilm and confine its formation. In this study, we developed a microfluidic system for real-time observation of bacteria culture and biofilms development at microscale. We cultured E. coli ATCC 25922 on a chip at continuous flow of the velocity, which could promote bacterial formation. Biofilms formation under the condition of adding amoxicillin at different times is also discussed. In addition, the mixed strains from sludge were also cultured on chip, and possible factors in biofilm formation are discussed. Our results show that a microfluidic device could culture microorganisms in continuous flow and accelerate them to adhere to the surface, thereby promoting biofilm formation. Overall, this platform is a useful tool in research on initial biofilm formation, which can contribute to preventing biofouling and infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...