Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemistry ; 23(11): 2532-2536, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28004427

ABSTRACT

MgO-supported osmium dioxo species, described as Os(=O)2 {-Osupport }1 or 2 (the brackets denote O atoms of the MgO surface), formed from Os3 (CO)12 via supported Os(CO)2 , and characterized by spectroscopy, microscopy, and theory, react with ethylene at 298 K to form osmium glycol species or with CO to give osmium mono- and di-carbonyls. Os(=O)2 {-Osupport }1 or 2 is the precursor of a CO oxidation catalyst characterized by a turnover frequency of 4.0×10-3 (molecules of CO)/(Os atom×s) at 473 K; the active species are inferred to be osmium monocarbonyls. The structures and frequencies calculated at the level of density functional theory with the B3LYP functional bolster the experimental results and facilitate structural assignments. The lowest-energy structures have various osmium oxidation and spin states. The results demonstrate not only new chemistry of the supported single-site catalysts but also their complexity and the value of complementary techniques used in concert to unravel the chemistry.

2.
Chemistry ; : 2436-2434, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27508526

ABSTRACT

Test New Article1 GodEarlyview.Publish-on-load testing.The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m?ZrO2 is 1.3 times more active than on t?ZrO2 , whereas Ni/m?ZrO2 is three times more active than Ni/t?ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the ??hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1?octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1?octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m?ZrO2 compared to t?ZrO2 causes the higher activity of Ni/m?ZrO2 .

3.
J Phys Chem Lett ; 7(13): 2537-43, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27315020

ABSTRACT

The initial steps of rhodium cluster formation from zeolite-supported mononuclear Rh(C2H4)2 complexes in H2 at 373 K and 1 bar were investigated by infrared and extended X-ray absorption fine structure spectroscopies and scanning transmission electron microscopy (STEM). The data show that ethylene ligands on the rhodium react with H2 to give supported rhodium hydrides and trigger the formation of rhodium clusters. STEM provided the first images of the smallest rhodium clusters (Rh2) and their further conversion into larger clusters. The samples were investigated in a plug-flow reactor as catalysts for the conversion of ethylene + H2 in a molar ratio of 4:1 at 1 bar and 298 K, with the results showing how the changes in catalyst structure affect the activity and selectivity; the rhodium clusters are more active for hydrogenation of ethylene than the single-site complexes, which are more selective for dimerization of ethylene to give butenes.

4.
Angew Chem Int Ed Engl ; 55(31): 8873-7, 2016 07 25.
Article in English | MEDLINE | ID: mdl-26990594

ABSTRACT

Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) has been used to image the basal {001} plane of the catalytically relevant M1 phase in MoVTeNb complex oxides. Facets {010}, {120}, and {210} are identified as the most frequent lateral termination planes of the crystals. Combination of STEM with He ion microscopy (HIM) images, Rietveld analysis, and kinetic tests reveals that the activation of ethane is correlated to the availability of facets {001}, {120}, and {210} at the surface of M1 crystals. The lateral facets {120} and {210} expose crystalline positions related to the typical active centers described for propane oxidation. Conversely, the low activity of the facet {010} is attributed to its configuration, consisting of only stable M6 O21 units connected by a single octahedron. Thus, we quantitatively demonstrated that differences in catalytic activity among M1 samples of equal chemical composition depend primarily on the morphology of the particles, which determines the predominant terminating facets.


Subject(s)
Oxides/chemistry , Transition Elements/chemistry , Catalysis , Hydrogenation , Microscopy, Electron, Scanning Transmission , Oxidation-Reduction , Particle Size , Surface Properties
5.
Chemistry ; 21(6): 2423-34, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25504844

ABSTRACT

The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2 , whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α-hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2 .


Subject(s)
Hydrogen/chemistry , Nickel/chemistry , Oxygen/chemistry , Stearic Acids/chemistry , Zirconium/chemistry , Catalysis , Hydrogenation , Kinetics , Oxidation-Reduction , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Temperature
6.
Angew Chem Int Ed Engl ; 53(34): 8904-7, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24986134

ABSTRACT

A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

7.
Microsc Microanal ; 20(2): 484-92, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24755142

ABSTRACT

The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

8.
Nano Lett ; 14(5): 2628-35, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24707978

ABSTRACT

Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol-gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.

9.
Nano Lett ; 13(12): 6106-12, 2013.
Article in English | MEDLINE | ID: mdl-24224495

ABSTRACT

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Subject(s)
Lithium/chemistry , Nanowires/chemistry , Silicon/chemistry , Electric Power Supplies , Electrochemistry , Electrodes , Microscopy, Electron, Transmission , Surface Properties
10.
Microsc Microanal ; 19(2): 470-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23452391

ABSTRACT

The advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 µm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 µm utilized for these experiments.


Subject(s)
Gases , Microscopy, Electron, Transmission/instrumentation , Microscopy, Electron, Transmission/methods , Nanoparticles/analysis , Heating , Lasers , Lead/analysis , Oxides/analysis , Titanium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...