Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Theor Appl Genet ; 131(4): 787-800, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29234827

ABSTRACT

KEY MESSAGE: SpWRKY3 was identified as a resistance gene to Phytophthora infestans from Solanum pimpinellifolium L3708 and its transgenic tomato showed a significant resistance to P. infestans. This finding reveals the potential application of SpWRKY3 in future molecular breeding. Transcription factors (TFs) play crucial roles in the plant response to various pathogens. In this present study, we used comparative transcriptome analysis of tomatoes inoculated with and without Phytophthora infestans to identify 1103 differentially expressed genes. Seven enrichment GO terms (level 4) associated with the plant resistance to pathogens were identified. It was found that thirty-five selected TF genes from GO enriched term, sequence-specific DNA binding transcription factor activity (GO: 0003700), were induced by P. infestans. Of these TFs, the accumulation of a homologous gene of WRKY (SpWRKY3) was significantly changed after P. infestans induction, and it was also isolated form P. infestans-resistant tomato, Solanum pimpinellifolium L3708. Overexpression of SpWRKY3 in tomato positively modulated P. infestans defense response as shown by decreased number of necrotic cells, lesion sizes and disease index, while the resistance was impaired after SpWRKY3 silencing. After P. infestans infection, the expression levels of PR genes in transgenic tomato plants overexpressed SpWRKY3 were significantly higher than those in WT, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. These results suggest that SpWRKY3 induces PR gene expression and reduces the ROS accumulation to protect against cell membrane injury, leading to enhanced resistance to P. infestans. Our results provide insight into SpWRKY3 as a positive regulator involved in tomato-P. infestans interaction, and its function may enhance tomato resistance to P. infestans.


Subject(s)
Phytophthora infestans , Plant Diseases/genetics , Plant Leaves/genetics , Solanum lycopersicum/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/genetics
2.
Int J Mol Sci ; 19(1)2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29271931

ABSTRACT

Leaf spot disease caused by the fungus Fusarium proliferatum (Matsushima) Nirenberg is a destructive disease of tomato plants in China. Typical symptoms of infected tomato plants are softened and wilted stems and leaves, leading to the eventual death of the entire plant. In this study, we resorted to transcriptional profile analysis to gain insight into the repertoire of effectors involved in F. proliferatum-tomato interactions. A total of 61,544,598 clean reads were de novo assembled to provide a F. proliferatum reference transcriptome. From these, 75,044 unigenes were obtained, with 19.46% of the unigenes being assigned to 276 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, with 22.3% having a homology with genes from F. fujikuroi. A total of 18,075 differentially expressed genes (DEGs) were identified, 720 of which were found to code for secreted proteins. Of these, 184 were identified as candidate effectors, while 79.89% had an upregulated expression. Moreover, 17 genes that were differentially expressed in RNA-seq studies were randomly selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). The study demonstrates that transcriptome analysis could be an effective method for identifying the repertoire of candidate effectors and may provide an invaluable resource for future functional analyses of F. proliferatum pathogenicity in F. proliferatum and tomato plant-host interactions.


Subject(s)
Fusarium/genetics , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Transcriptome , Fusarium/pathogenicity , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction
3.
Plant Sci ; 265: 177-187, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29223339

ABSTRACT

Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways.


Subject(s)
Disease Resistance/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Diseases/genetics , RNA, Plant/genetics , Salicylic Acid/metabolism , Solanum lycopersicum/genetics , Botrytis/physiology , MicroRNAs/metabolism , Phytophthora infestans/physiology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , RNA, Plant/metabolism , Up-Regulation
4.
Enzyme Microb Technol ; 51(1): 40-6, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22579389

ABSTRACT

Lipase from Burkholderia cepacia was encapsulated inside zirconia particles by biomimetic mineralization of K2ZrF6 induced with protamine, a natural cationic protein. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were employed for the characterization of the novel immobilized lipase. SEM and TEM images showed that both the zirconia particles with and without lipase have good spherical structures with average particle sizes of 150 nm. Fluorescence microscopy demonstrated that the lipase was indeed encapsulated inside the zirconia particles. The maximum immobilization capacity of the zirconia particles was 0.15 units/mg under optimum immobilization conditions. Biochemical characterization showed that the encapsulated lipase could retain most of its initial activity. Compared with free lipase, the encapsulated lipase exhibited improved thermal, pH, and recycling stabilities. After 8 weeks of storage, no substantial loss in catalytic activity was observed for the encapsulated lipase. The conversion of the kinetic resolution of (R,S)-1-phenylethanol with vinyl acetate as acetyl donor catalyzed by zirconia-immobilized lipase reached 49.9% with higher ee(s) of 99.9% under the following optimal conditions: octane as solvent, 0.1M (R,S)-1-phenylethanol, 70 mg immobilized lipase, 180 rpm, 50 °C for 48 h. After 6 cycles (288 h), the conversion and ee(s) were still 43% and 85%, respectively.


Subject(s)
Benzyl Alcohols/isolation & purification , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Benzyl Alcohols/chemistry , Biomimetic Materials , Burkholderia cepacia/enzymology , Enzyme Stability , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Vinyl Compounds , Zirconium
5.
Arch Virol ; 156(6): 939-43, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21409447

ABSTRACT

The DNA sequence of the RNA-dependent RNA polymerase (RdRp) gene of lily symptomless virus (LSV), a lily-infecting member of the genus Carlavirus, was determined from nine overlapping cDNA fragments of different sizes. The complete sequence of this RdRp gene (HM070294) consisted of 5,847 nucleotides coding for a protein of 220 kDa. It had 97-98% sequence identity with RdRps of other known isolates at both the DNA and the amino acid level. Phylogenetic analysis indicated that this RdRp (designated as RdRp-DL) was closely related to the RdRp of the Korean isolate (AM516059), as well as to the RdRps from Passiflora latent virus (PLV) and Kalanchoe latent virus (KLV) of the genus Carlavirus. Hydrophobic analysis of RdRp-DL revealed a hydrophobic N-terminus and a hydrophilic C-terminus. Helices and Loops were the major secondary structures of RdRp-DL. In addition, RdRp-DL also had three coil structures. Four conserved domains were identified: typoviral methyltransferase, RNA-dependent RNA polymerase, P-loop-containing nucleoside triphosphate hydrolases and carlavirus endopeptidase. A model of the tertiary structure predicted by I-TASSER was obtained for each of these conserved domains. This is the first report of a detailed phylogenetic analysis of LSV RdRp with those of other members of the genus Carlavirus, and the first to predict the domain structures of LSV RdRp.


Subject(s)
Carlavirus/enzymology , Lilium/virology , RNA-Dependent RNA Polymerase/chemistry , Viral Proteins/chemistry , Viral Proteins/genetics , Amino Acid Sequence , Carlavirus/genetics , DNA, Complementary , Genome, Viral , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Phylogeny , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL