Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 36(10): 1256-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26190500

ABSTRACT

AIM: To investigate the effects of 3,4,4'-trihydroxy-trans-stilbene (3,4,4'-THS), an analogue of resveratrol, on human non-small-cell lung cancer (NSCLC) cells in vitro. METHODS: Cell viability of NSCLC A549 cells was determined by MTT assay. Cell apoptosis was evaluated using flow cytometry and TUNEL assay. Cell necrosis was evaluated with LDH assay. The expression of apoptosis- or autophagy-associated proteins was measured using Western blotting. The formation of acidic compartments was detected using AO staining, neutral red staining and Lysotracker-Red staining. LC3 punctae were analyzed with fluorescence microscopy. RESULTS: Treatment with 3,4,4'-THS (10-80 µmol/L) concentration-dependently inhibited the cell viability. It did not cause cell necrosis, but induced apoptosis accompanied by up-regulation of cleavaged PARP, caspase3/9 and Bax, and by down-regulation of Bcl-2 and surviving. It also increased the formation of acidic compartments, LC3-II accumulation and GFP-LC3 labeled autophagosomes in the cells. It inhibited the mTOR-dependent pathway, but did not impair autophagic flux. 3,4,4'-THS-induced cell death was enhanced by the autophagy inhibitors 3-MA (5 mmol/L) or Wortmannin (2 µmol/L). Moreover, 3,4,4'-THS treatment elevated the ROS levels in the cells, and co-treatment with 3-MA further elevated the ROS levels. 3,4,4'-THS-induced apoptosis and autophagy in the cells was attenuated by NAC (10 mmol/L)Conclusion:3,4,4'-THS induces both apoptosis and autophagy in NSCLC A549 cells in vitro. Autophagy inhibitors promote 3,4,4'-THS-induced apoptosis of A549 cells, thus combination of 3,4,4'-THS and autophagy inhibitor provides a promising strategy for NSCLC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Stilbenes/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
2.
Acta Pharmacol Sin ; 34(9): 1174-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770989

ABSTRACT

AIM: Trans-3,4,5,4'-tetramethoxystilbene (DMU-212) has shown strong antiproliferative activities against a variety of cancer cells. The aim of this study was to investigate the anti-angiogenic effects of DMU-212 in vitro and in vivo. METHODS: Human umbilical vein endothelial cells (HUVECs) were used in this study. Cell viability was studied with MTT assay, and cell apoptosis was evaluated using TUNEL assay and morphological observation. The expression of the related genes and proteins was analyzed with qRT-PCR and Western blot, respectively. Angiogenesis of HUVECs were studied using cell migration and capillary-like tube formation assays in vitro, and mouse Matrigel plug assay and chick chorioallantoic membrane (CAM) assay in vivo. The tyrosine kinase activities of VEGFR1 and VEGFR2 were measured using commercial kits. RESULTS: DMU-212 (5-80 µmol/L) significantly inhibited VEGF-stimulated proliferation of HUVECs (IC50 value was approximately 20 µmol/L), and induced apoptosis. Furthermore, DMU-212 concentration-dependently inhibited VEGF-induced migration of HUVECs and capillary-like structure formation in vitro. DMU-212 also inhibited VEGF-induced generation of new vasculature in Matrigel plugs in vivo with significantly decreased area of infiltrating CD31-positive endothelial cells, and inhibited newly formed microvessels in chick CAMs. Moreover, DMU-212 concentration-dependently suppressed VEGF-induced phosphorylation of VEGFR2, and inhibited phosphorylation of multiple downstream signaling components in the VEGFR2 pathway, including c-Src, FAK, Erk1/2, Akt, mTOR, and p70S6K in HUVECs. DMU-212 had no effect on VEGF-induced phosphorylation of VEGFR1. CONCLUSION: DMU-212 is a potent inhibitor of angiogenesis that exerts anti-angiogenic activity at least in part through the VEGFR2 signaling pathway.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Stilbenes/pharmacology , Angiogenesis Inhibitors/chemistry , Animals , Cell Movement/drug effects , Cell Movement/physiology , Chick Embryo , Dose-Response Relationship, Drug , Human Umbilical Vein Endothelial Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/physiology , Resveratrol , Stilbenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...