Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.936
Filter
1.
Int J Rheum Dis ; 27(6): e15204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831528

ABSTRACT

BACKGROUND: Previous studies have reported low serum 25-hydroxyvitamin D [25(OH)D] levels in dermatomyositis (DM) patients, but the exact causal relationship between them remains elusive. Our aim is to confirm the causal relationship between 25(OH)D and DM risk through a Mendelian randomization study. METHODS: Retrieve genome-wide association study (GWAS) data on 25(OH)D (n = 441 291) and DM (n cases = 201, n controls = 172 834) from the GWAS database (https://gwas.mrcieu.ac.uk/). Select single-nucleotide polymorphisms (SNPs) strongly correlated with 25(OH)D as instrumental variables (IVs). The primary analytical approach involves the use of the inverse-variance weighted method (IVW), supplemented by MR-Egger regression and weighted median methods to enhance the reliability of the results. Heterogeneity and sensitivity analyses were conducted using Cochran's Q and leave-one-out approaches, respectively. RESULTS: The IVW analysis confirmed a positive causal relationship between genetic variation in 25(OH)D levels and DM (OR = 2.36, 95% CI = 1.01-5.52, p = .048). Although not statistically significant (all p > .05), the other methods also suggested a protective effect of 25(OH)D on DM. Based on MR-Egger intercepts and Cochran's Q analysis, the selected SNPs showed no horizontal pleiotropy and heterogeneity. Sensitivity analysis demonstrated the robustness of the results against individual SNPs. CONCLUSION: We provide the first evidence of a causal relationship between 25(OH)D levels and DM. Our findings support the importance of measuring serum 25(OH)D levels and considering vitamin D supplementation in clinical practice for patients with DM.


Subject(s)
Dermatomyositis , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Vitamin D , Humans , Vitamin D/analogs & derivatives , Vitamin D/blood , Dermatomyositis/genetics , Dermatomyositis/blood , Dermatomyositis/diagnosis , Dermatomyositis/epidemiology , Risk Factors , Genetic Predisposition to Disease , Biomarkers/blood , Risk Assessment , Vitamin D Deficiency/blood , Vitamin D Deficiency/genetics , Vitamin D Deficiency/diagnosis , Vitamin D Deficiency/epidemiology , Case-Control Studies , Phenotype , Databases, Genetic
2.
Acta Pharm Sin B ; 14(6): 2598-2612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828149

ABSTRACT

Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) is an essential tyrosine phosphatase that is pivotal in regulating various cellular signaling pathways such as cell growth, differentiation, and survival. The activation of SHP2 has been shown to have a therapeutic effect in colitis and Parkinson's disease. Thus, the identification of SHP2 activators and a complete understanding of their mechanism is required. We used a two-step screening assay to determine a novel allosteric activator of SHP2 that stabilizes it in an open conformation. Oleanolic acid was identified as a suitable candidate. By binding to R362, K364, and K366 in the active center of the PTP domain, oleanolic acid maintained the active open state of SHP2, which facilitated the binding between SHP2 and its substrate. This oleanolic acid-activated SHP2 hindered Th17 differentiation by disturbing the interaction between STAT3 and IL-6Rα and inhibiting the activation of STAT3. Furthermore, via the activation of SHP2 and subsequent attenuation of the STAT3-Th17 axis, oleanolic acid effectively mitigated colitis in mice. This protective effect was abrogated by SHP2 knockout or administration of the SHP2 inhibitor SHP099. These findings underscore the potential of oleanolic acid as a promising therapeutic agent for treating inflammatory bowel diseases.

3.
J Mol Cell Biol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692847

ABSTRACT

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.

4.
J Med Virol ; 96(5): e29640, 2024 May.
Article in English | MEDLINE | ID: mdl-38699969

ABSTRACT

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Aged , Antibodies, Viral/blood , Male , Female , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged, 80 and over , Middle Aged , Longitudinal Studies , Vaccination
5.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731750

ABSTRACT

Salmonella is a common foodborne pathogen that can cause food poisoning, posing a serious threat to human health. Therefore, quickly, sensitively, and accurately detecting Salmonella is crucial to ensuring food safety. For the Salmonella hilA gene, we designed Recombinase-aided amplification (RAA) primers and dsDNA-specific nuclease (DNase) probes. The ideal primer and probe combination was found when conditions were optimized. Under UV light, a visual Salmonella detection technique (RAA-dsDNase) was developed. Additionally, the RAA-dsDNase was modified to further reduce pollution hazards and simplify operations. One-pot RAA-dsDNase-UV or one-pot RAA-dsDNase-LFD was developed as a Salmonella detection method, using UV or a lateral flow dipstick (LFD) for result observation. Among them, one-pot RAA-dsDNase and one-pot RAA-dsDNase-LFD had detection times of 50 min and 60 min, respectively, for detecting Salmonella genomic DNA. One-pot RAA-dsDNase-UV had a detection limit of 101 copies/µL and 101 CFU/mL, while one-pot RAA-dsDNase-LFD had a sensitivity of 102 copies/µL and 102 CFU/mL. One-pot RAA-dsDNase-UV and one-pot RAA-dsDNase-LFD assays may identify 17 specific Salmonella serovars witho ut causing a cross-reaction with the remaining 8 bacteria, which include E. coli. Furthermore, Salmonella in tissue and milk samples has been reliably detected using both approaches. Overall, the detection method developed in this study can quickly, sensitively, and accurately detect Salmonella, and it is expected to become an important detection tool for the prevention and control of Salmonella in the future.

6.
Acta Pharmacol Sin ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744938

ABSTRACT

Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease with an unclear pathogenesis, and there is currently no approved drug for the treatment of this disease. Iguratimod, as a novel clinical anti-rheumatic drug in China and Japan, has shown remarkable efficacy in improving the symptoms of patients with pSS in clinical studies. In this study we investigated the mechanisms underlying the therapeutic effect of iguratimod in the treatment of pSS. Experimental Sjögren's syndrome (ESS) model was established in female mice by immunizing with salivary gland protein. After immunization, ESS mice were orally treated with iguratimod (10, 30, 100 mg·kg-1·d-1) or hydroxychloroquine (50 mg·kg-1·d-1) for 70 days. We showed that iguratimod administration dose-dependently increased saliva secretion, and ameliorated ESS development by predominantly inhibiting B cells activation and plasma cell differentiation. Iguratimod (30 and 100 mg·kg-1·d-1) was more effective than hydroxychloroquine (50 mg·kg-1·d-1). When the potential target of iguratimod was searched, we found that iguratimod bound to TEC kinase and promoted its degradation through the autophagy-lysosome pathway in BAFF-activated B cells, thereby directly inhibiting TEC-regulated B cells function, suggesting that the action mode of iguratimod on TEC was different from that of conventional kinase inhibitors. In addition, we found a crucial role of TEC overexpression in plasma cells of patients with pSS. Together, we demonstrate that iguratimod effectively ameliorates ESS via its unique suppression of TEC function, which will be helpful for its clinical application. Targeting TEC kinase, a new regulatory factor for B cells, may be a promising therapeutic option.

7.
J Am Chem Soc ; 146(19): 13571-13579, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710105

ABSTRACT

Based on quantum mechanically guided experiments that observed elusive intermediates in the domain of inception that lies between large molecules and soot particles, we provide a new mechanism for the formation of carbonaceous particles from gas-phase molecular precursors. We investigated the clustering behavior of resonantly stabilized radicals (RSRs) and their interactions with unsaturated hydrocarbons through a combination of gas-phase reaction experiments and theoretical calculations. Our research directly observed a sequence of covalently bound clusters (CBCs) as key intermediates in the evolution from small RSRs, such as benzyl (C7H7), indenyl (C9H7), 1-methylnaphthyl (1-C11H9), and 2-methylnaphthyl (2-C11H9), to large polycyclic aromatic hydrocarbons (PAHs) consisting of 28 to 55 carbons. We found that hydrogen abstraction and RSR addition drive the formation and growth of CBCs, leading to progressive H-losses, the generation of large PAHs and PAH radicals, and the formation of white smoke (incipient carbonaceous particles). This mechanism of progressive H-losses from CBCs (PHLCBC) elucidates the crucial relationship among RSRs, CBCs, and PAHs, and this study provides an unprecedentedly seamless path of observed assembly from small RSRs to large nanoparticles. Understanding the PHLCBC mechanism over a wide temperature range may enhance the accuracy of multiscale models of soot formation, guide the synthesis of carbonaceous nanomaterials, and deepen our understanding of the origin and evolution of carbon within our galaxy.

8.
Surg Obes Relat Dis ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38782612

ABSTRACT

BACKGROUND: Bile acids can stimulate the secretion of glucagon-like peptide-1 (GLP-1) and be mostly reabsorbed in the ileum. OBJECTIVES: We aimed to investigate whether ileum excision could reverse the glucose improvement after biliopancreatic diversion with duodenal switch (BPD/DS). SETTING: Peking Union Medical College Hospital. METHODS: Thirty diabetic rats were randomly divided into the BPD/DS group, BPD/DS plus ileectomy (BDI) group, and control group. The fasting blood glucose, bile acids, and glucagon-like peptide-1(GLP-1) levels in plasma samples were analyzed. RESULTS: In postoperative week 20, the fasting blood glucose level in the BDI group was significantly higher than that in the BPD/DS group (11.5 ± 1.4 mmol/L versus 7.6 ± 1.0 mmol/L, P < .001), and the AUCOGTT value was also significantly higher than that in the BPD/DS group (2186.1 ± 237.2 mmol/L·min versus 1551.2 ± 136.9 mmol/L·min, P < .001). The plasma level of bile acids in the BDI group was lower than that in the BPD/DS group (P = .012) and was not significantly different from that in the control group (P = .629). The plasma level of GLP-1 in the BDI group was lower than that in the BPD/DS group (P = .009) and was not significantly different from that in the control group (P = .530). Moreover, the intestinal TGR5 expression in the BDI group was significantly lower than that in the BPD/DS group (P < .001). CONCLUSIONS: The results show that excision of the ileum can partially reverse the improvement in glucose metabolism after BPD/DS.

9.
Nat Aging ; 4(5): 664-680, 2024 May.
Article in English | MEDLINE | ID: mdl-38760576

ABSTRACT

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases , Fibrosis , G-Quadruplexes , Osteoarthritis , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , Osteoarthritis/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Fibrosis/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Male
10.
ACS Appl Mater Interfaces ; 16(20): 26272-26279, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728610

ABSTRACT

Porphyrin-based metal-organic frameworks (MOFs) are ideal platforms for heterogeneous photocatalysts toward CO2 reduction. To further explore photocatalytic MOF systems, it is also necessary to consider their ability to fine-tune the microenvironments of the active sites, which affects their overall catalytic operation. Herein, a kind of ionic liquid (IL, here is 3-butyric acid-1-methyl imidazolium bromide, BAMeImBr) was anchored to iron-porphyrinic Zr-MOFs with different amounts to obtain ILx@MOF-526 (MOF-526 = Zr6O4(OH)4(FeTCBPP)3, FeTCBPP = iron 5,10,15,20-tetra[4-(4'-carboxyphenyl)phenyl]-porphyrin, x = 100, 200, and 400). ILx@MOF-526 series was designed to investigate the effects of the microenvironmental and electronic structural modification on the efficiency and selectivity of the photochemical reduction of CO2 after introducing IL fragments. Compared to parent MOF-526, the production and selectivity of CO were greatly improved in the absence of any photosensitizer under visible light by the ILx@MOF-526 series. Among them, the CO yield of IL200@MOF-526 was up to 14.0 mmol g-1 within 72 h with a remarkable CO selectivity of 97%, which is superior to that of MOF-526 without BAMeIm+ modification and other amounts of BAMeIm+ loaded. Furthermore, density functional theory calculations were performed to study the mechanism of the CO2 reduction.

12.
Nat Genet ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811844

ABSTRACT

Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 × 10-11 for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations.

13.
Transl Psychiatry ; 14(1): 215, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806463

ABSTRACT

Previous observational investigations suggest that structural and diffusion imaging-derived phenotypes (IDPs) are associated with major neurodegenerative diseases; however, whether these associations are causal remains largely uncertain. Herein we conducted bidirectional two-sample Mendelian randomization analyses to infer the causal relationships between structural and diffusion IDPs and major neurodegenerative diseases using common genetic variants-single nucleotide polymorphism (SNPs) as instrumental variables. Summary statistics of genome-wide association study (GWAS) for structural and diffusion IDPs were obtained from 33,224 individuals in the UK Biobank cohort. Summary statistics of GWAS for seven major neurodegenerative diseases were obtained from the largest GWAS for each disease to date. The forward MR analyses identified significant or suggestively statistical causal effects of genetically predicted three structural IDPs on Alzheimer's disease (AD), frontotemporal dementia (FTD), and multiple sclerosis. For example, the reduction in the surface area of the left superior temporal gyrus was associated with a higher risk of AD. The reverse MR analyses identified significantly or suggestively statistical causal effects of genetically predicted AD, Lewy body dementia (LBD), and FTD on nine structural and diffusion IDPs. For example, LBD was associated with increased mean diffusivity in the right superior longitudinal fasciculus and AD was associated with decreased gray matter volume in the right ventral striatum. Our findings might contribute to shedding light on the prediction and therapeutic intervention for the major neurodegenerative diseases at the neuroimaging level.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Genome-Wide Association Study , Mendelian Randomization Analysis , Neurodegenerative Diseases , Phenotype , Polymorphism, Single Nucleotide , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Female , Diffusion Magnetic Resonance Imaging , Multiple Sclerosis/genetics , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Aged , Lewy Body Disease/genetics , Lewy Body Disease/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging , United Kingdom
14.
Nat Commun ; 15(1): 4562, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811539

ABSTRACT

Two-dimensional layered organic-inorganic halide perovskites have successfully spread to diverse optoelectronic applications. Nevertheless, there remain gaps in our understanding of the interactions between organic and inorganic sublattices that form the foundation of their remarkable properties. Here, we examine these interactions using pump-probe spectroscopy and ab initio molecular dynamics simulations. Unlike off-resonant pumping, resonant excitation of the organic sublattice alters both the electronic and lattice degrees of freedom within the inorganic sublattice, indicating the existence of electronic coupling. Theoretical simulations verify that the reduced bandgap is likely due to the enhanced distortion index of the inorganic octahedra. Further evidence of the mechanical coupling between these two sublattices is revealed through the slow heat transfer process, where the resultant lattice tensile strain launches coherent longitudinal acoustic phonons. Our findings explicate the intimate electronic and mechanical couplings between the organic and inorganic sublattices, crucial for tailoring the optoelectronic properties of two-dimensional halide perovskites.

15.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603798

ABSTRACT

The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.

16.
PLoS One ; 19(4): e0301428, 2024.
Article in English | MEDLINE | ID: mdl-38625862

ABSTRACT

In urban areas with limited underground space, the new tunnel construction introduces additional loads and displacements to existing tunnels, raising serious safety concerns. These concerns become particularly pronounced in the case of closely undercrossing excavation at zero-distance. The conventional elastic foundation beam model, which assumes constant reaction coefficients for the subgrade, fails to account for foundation loss. In this study, the existing tunnel is modeled as an Euler-Bernoulli beam supported by the Pasternak elastic foundation, and the foundation loss caused by zero-distance undercrossing excavations is considered. Furthermore, an analytical solution is proposed to evaluate the mechanical response in segments, by establishing governing differential equations and boundary conditions for the excavation and neutral zones, and underpinning loads are also considered. The analytical solution is validated in two case studies. Finally, a parametric analysis is performed to explore the influence of various parameters on the mechanical response of the existing tunnel.

17.
J Formos Med Assoc ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38582737

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with a heterogeneous prognosis. Novel markers are required to accurately assess the prognosis and formulate treatment plans. METHODS: The association of ARHGAP family genes with prognostic value in acute myeloid leukemia (AML) was assessed using public databases (CCLE, GEPIA, TCGA, and GEO). RESULTS: Elevated expression of ARHGAP43 (SH3BP1) was associated with poor prognosis in patients with acute myeloid leukemia. ARHGAP43 (SH3BP1) expression was higher in the poor/adverse prognosis (P < 0.001) and TP53 mutation groups (P = 0.0093). Higher ARHGAP43 (SH3BP1) expression was found to be an independent prognostic predictor in multivariate COX regression analysis (HR = 1.317, 95% CI: 1.008-1.720, P = 0.044). Higher ARHGAP43 (SH3BP1) expression who did not receive hematopoietic stem cell transplantation (HSCT) had shorter overall survival (OS) and progression-free survival (PFS) (OS: median: 7.60 vs. 24.90 months; P = 0.006; PFS: median: 11.40 vs. 27.22 months; P = 0.0096), whereas OS and PFS of patients who received HSCT were unaffected, suggesting that HSCT is a better treatment option for patients with higher ARHGAP43 (SH3BP1) expression. KEGG and GSEA analyses revealed that high-expression ARHGAP43 (SH3BP1) was related to inflammation and immune response. Additionally, down-regulation of ARHGAP43 (SH3BP1) expression inhibited AML cell proliferation. CONCLUSION: These findings highlight the clinical potential of ARHGAP43 (SH3BP1) as a novel biomarker of AML, with higher levels indicating a poor prognosis.

18.
Front Cardiovasc Med ; 11: 1349363, 2024.
Article in English | MEDLINE | ID: mdl-38562184

ABSTRACT

Backgrounds: Cuprotosis is a newly discovered programmed cell death by modulating tricarboxylic acid cycle. Emerging evidence showed that cuprotosis-related genes (CRGs) are implicated in the occurrence and progression of multiple diseases. However, the mechanism of cuprotosis in heart failure (HF) has not been investigated yet. Methods: The HF microarray datasets GSE16499, GSE26887, GSE42955, GSE57338, GSE76701, and GSE79962 were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed CRGs between HF patients and nonfailing donors (NFDs). Four machine learning models were used to identify key CRGs features for HF diagnosis. The expression profiles of key CRGs were further validated in a merged GEO external validation dataset and human samples through quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In addition, Gene Ontology (GO) function enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and immune infiltration analysis were used to investigate potential biological functions of key CRGs. Results: We discovered nine differentially expressed CRGs in heart tissues from HF patients and NFDs. With the aid of four machine learning algorithms, we identified three indicators of cuprotosis (DLAT, SLC31A1, and DLST) in HF, which showed good diagnostic properties. In addition, their differential expression between HF patients and NFDs was confirmed through qRT-PCR. Moreover, the results of enrichment analyses and immune infiltration exhibited that these diagnostic markers of CRGs were strongly correlated to energy metabolism and immune activity. Conclusions: Our study discovered that cuprotosis was strongly related to the pathogenesis of HF, probably by regulating energy metabolism-associated and immune-associated signaling pathways.

19.
Appl Opt ; 63(8): 2101-2108, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38568654

ABSTRACT

This paper presents the test results for high-performance and high-uniformity waveguide silicon-based germanium (Ge) photodetectors (PDs) for the O band and C band. Both wafer-scale and chip-scale test results are provided. The fabricated lateral p-i-n (LPIN) PDs exhibit a responsivity of 0.97 A/W at a bias of -2V, a bandwidth of 60 GHz, and a no-return-to-zero (NRZ) eye diagram rate of 53.125 Gb/s. Additionally, an average dark current of 22.4 nA was obtained in the vertical p-i-n (VPIN) PDs at -2V by optimizing the doping process. The device can reach an average responsivity of 0.9 A/W in the O band. The standard deviation in a wafer with a dark current and responsivity is as low as 7.77 nA and 0.03 A/W at -2V, respectively.

20.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38650829

ABSTRACT

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...