Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(8): 552, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620362

ABSTRACT

Mutation-induced malfunction of ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is widely reported in haematological malignancies. However, the role of TET2 in solid cancers, including colorectal cancer (CRC), is unclear. Here, we found that TET2 malfunction in CRC is mostly due to decreased nuclear localization and that nuclear localization of TET2 is correlated with better survival of patients. To explore the underlying mechanisms, 14 immortalized solid tumour cell lines and 12 primary CRC cell lines were used. TET2 was mostly detected in the nucleus, and it induced significant DNA demethylation and suppressed cell growth by demethylating RORA and SPARC in cell lines like SW480. While in cell lines like SW620, TET2 was observed in the cytosol and did not affect DNA methylation or cell growth. Further examination with immunoprecipitation-mass spectrometry illustrated that ß-catenin activation was indispensable for the nuclear localization and tumour suppression effects of TET2. In addition, the ß-catenin pathway activator IM12 and the TET2 activator vitamin C were used simultaneously to enhance the effects of TET2 under low-expression conditions, and synergistic inhibitory effects on the growth of cancer were observed both in vitro and in vivo. Collectively, these data suggest that ß-catenin-mediated nuclear localization of TET2 is an important therapeutic target for solid tumours.


Subject(s)
Colorectal Neoplasms , DNA-Binding Proteins , Dioxygenases , beta Catenin , Humans , Cell Line, Tumor , Cell Nucleus , Colorectal Neoplasms/genetics , Cytosol , Dioxygenases/genetics , DNA-Binding Proteins/genetics
2.
FASEB J ; 34(4): 5917-5930, 2020 04.
Article in English | MEDLINE | ID: mdl-32154623

ABSTRACT

The abilities of opioids to activate downstream signaling pathways normally depend on the binding between opioids and their receptors. However, opioids may also function in a receptor-independent manner, especially in neural stem cells (NSCs) in which the expression of opioid receptors and endogenous opioid agonists is low. When two opioids, morphine and naloxone, were used during the early stage of NSC differentiation, increased neurogenesis was observed. However, naloxone methiodide, a membrane impenetrable analog of naloxone, did not affect the NSC differentiation. The abilities of morphine and naloxone to facilitate neurogenesis were also observed in opioid receptor-knockout NSCs. Therefore, morphine and naloxone promote neurogenesis in a receptor-independent manner at least during the early stage. In addition, the receptor-independent functions of opioids were not observed in methylcytosine dioxygenase ten-eleven translocation 1 (Tet1) knockout NSCs. When the expression of opioid receptors increased and the expression of Tet1 decreased during the late stage of NSC differentiation, morphine, but not naloxone, inhibited neurogenesis via traditional receptor-dependent and miR181a-Prox1-Notch-related pathway. In summary, the current results demonstrated the time-dependent effects of opioids during the differentiation of NSCs and provided additional insight on the complex functions of opioids.


Subject(s)
Cell Differentiation , Embryo, Mammalian/cytology , Fibroblasts/cytology , Naloxone/pharmacology , Neural Stem Cells/cytology , Neurogenesis , Receptors, Opioid, mu/physiology , Animals , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphine/pharmacology , Narcotic Antagonists/pharmacology , Narcotics/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism
3.
EMBO J ; 39(8): e102961, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32090361

ABSTRACT

Both metabolic switch from oxidative phosphorylation to glycolysis (OGS) and epithelial-mesenchymal transition (EMT) promote cellular reprogramming at early stages. However, their connections have not been elucidated. Here, when a chemically defined medium was used to induce early EMT during mouse reprogramming, a facilitated OGS was also observed at the same time. Additional investigations suggested that the two events formed a positive feedback loop via transcriptional activation, cooperated to upregulate epigenetic factors such as Bmi1, Ctcf, Ezh2, Kdm2b, and Wdr5, and accelerated pluripotency induction at the early stage. However, at late stages, by over-inducing glycolysis and preventing the necessary mesenchymal-epithelial transition, the two events trapped the cells at a new pluripotency state between naïve and primed states and inhibited further reprogramming toward the naïve state. In addition, the pluripotent stem cells at the new state have high similarity to epiblasts from E4.5 and E5.5 embryos, and have distinct characteristics from the previously reported epiblast-like or formative states. Therefore, the time-dependent cooperation between OGS and EMT in regulating pluripotency should extend our understanding of related fields.


Subject(s)
Cellular Reprogramming , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation, Developmental , Glycolysis , Oxidative Phosphorylation , Pluripotent Stem Cells/metabolism , Animals , Blastocyst , Female , Humans , Mice , Mice, Inbred ICR , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...