Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(49): 18065-18074, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019807

ABSTRACT

Two-dimensional violet phosphorus (VP) has emerged as a new sensing material in various sensing applications due to its unique electrical properties and high stability among allotropes of phosphorus. Currently, the research of the VP-based analysis method is at the early stage. In this work, a VP nanosheet-based field-effect transistor (FET) sensor is reported for the detection of NO2 and N2O gases with extraordinary sensing performance. This sensor can achieve excellent sensitivity of up to ∼50% current change/ppm and a low detection limit of 5.9 ppb and enables the NO2 analysis in various mixed gases. Moreover, this sensor can effectively distinguish between NO2 and N2O gases, which is a big challenge for current FET or chemiresistor gas sensors. The different sensing behaviors of the VP sensor to NO2 and N2O gases have been investigated, and the mechanism study shows that the adsorption energy, bond length of the gas molecule on the VP surface, and the decomposition of N2O led to the differential responses. This work is one of the pioneer studies of VP gas sensors and presents a new sensing method for the discriminative analysis of NO2 and N2O for greenhouse gas emission monitoring and air quality control.

2.
Front Surg ; 9: 988843, 2022.
Article in English | MEDLINE | ID: mdl-36311952

ABSTRACT

Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.

3.
ACS Sens ; 7(7): 1874-1882, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35820060

ABSTRACT

MXenes have shown exceptional electrochemical properties and demonstrate great promise in chemiresistive gas analysis applications. However, their sensing applications still face low sensitivity and specificity, slow response, and poor stability among the many challenges. Herein, a novel synthetic approach is reported to produce single-atom Pt (Pt SA)-implanted Ti3C2Tx MXene nanosheets as the sensing channel in field-effect transistor (FET) gas sensors. This is a pioneer study of single-atom catalysts loaded on MXene nanosheets for gas detection, which demonstrates that Pt SA can greatly enhance the sensing performance of pristine Ti3C2Tx. The Pt SA-Ti3C2Tx sensor exhibits high sensitivity and specificity toward ppb level (a low detection limit of 14 ppb) triethylamine (TEA) with good multicycle sensing performance. Moreover, the mechanism study and density functional theory (DFT) simulation show that the chemical sensitization effect and TEA adsorption enhancement from highly catalytic and uniformly distributed Pt SA lead to the enhanced sensing performances. This work presents a new prospect of single-atom catalysts for gas analysis applications, which will promote the development of cutting-edge sensing techniques for gas detection for public health and environment.


Subject(s)
Volatile Organic Compounds , Adsorption , Catalysis , Titanium
4.
J Hazard Mater ; 424(Pt B): 127492, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34678565

ABSTRACT

Despite the critical need to monitor H2S, a hazardous gas, in environmental and medical settings, there are currently no reliable methods for rapid and sufficiently discriminative H2S detection in real-world humid environments. Herein, targeted hybridizing of Ti3C2Tx MXene with Ag nanoparticles on a field-effect transistor (FET) platform has led to a step change in MXene sensing performance down to ppb levels, and enabled the very high selectivity and fast response/recovery time under room temperature for H2S detection in humid conditions. For the first time, we present a novel relative humidity (RH) self-calibration strategy for the accurate detection of H2S. This strategy can eliminate the influence of humidity and enables the accurate quantitative detection of gas in the total RH range. We further elucidate that the superior H2S sensing performance is attributed to the electron and chemical sensitization effects. This study opens new avenues for the development of high-performance MXene-based sensors and offers a viable approach for addressing real-world humidity effect for gas sensors generally.

SELECTION OF CITATIONS
SEARCH DETAIL
...