Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 12: 1347219, 2024.
Article in English | MEDLINE | ID: mdl-38726233

ABSTRACT

Background: Osteoporosis is becoming more common worldwide, imposing a substantial burden on individuals and society. The onset of osteoporosis is subtle, early detection is challenging, and population-wide screening is infeasible. Thus, there is a need to develop a method to identify those at high risk for osteoporosis. Objective: This study aimed to develop a machine learning algorithm to effectively identify people with low bone density, using readily available demographic and blood biochemical data. Methods: Using NHANES 2017-2020 data, participants over 50 years old with complete femoral neck BMD data were selected. This cohort was randomly divided into training (70%) and test (30%) sets. Lasso regression selected variables for inclusion in six machine learning models built on the training data: logistic regression (LR), support vector machine (SVM), gradient boosting machine (GBM), naive Bayes (NB), artificial neural network (ANN) and random forest (RF). NHANES data from the 2013-2014 cycle was used as an external validation set input into the models to verify their generalizability. Model discrimination was assessed via AUC, accuracy, sensitivity, specificity, precision and F1 score. Calibration curves evaluated goodness-of-fit. Decision curves determined clinical utility. The SHAP framework analyzed variable importance. Results: A total of 3,545 participants were included in the internal validation set of this study, of whom 1870 had normal bone density and 1,675 had low bone density Lasso regression selected 19 variables. In the test set, AUC was 0.785 (LR), 0.780 (SVM), 0.775 (GBM), 0.729 (NB), 0.771 (ANN), and 0.768 (RF). The LR model has the best discrimination and a better calibration curve fit, the best clinical net benefit for the decision curve, and it also reflects good predictive power in the external validation dataset The top variables in the LR model were: age, BMI, gender, creatine phosphokinase, total cholesterol and alkaline phosphatase. Conclusion: The machine learning model demonstrated effective classification of low BMD using blood biomarkers. This could aid clinical decision making for osteoporosis prevention and management.


Subject(s)
Bone Density , Machine Learning , Osteoporosis , Humans , Female , Middle Aged , Male , Osteoporosis/diagnosis , Aged , Algorithms , Nutrition Surveys , Logistic Models , Support Vector Machine
2.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686016

ABSTRACT

Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , RNA-Seq , Single-Cell Gene Expression Analysis , Lipid Metabolism , Fatty Acids , Tumor Microenvironment/genetics
3.
Microsyst Nanoeng ; 9: 96, 2023.
Article in English | MEDLINE | ID: mdl-37484501

ABSTRACT

Spiking neural networks (SNNs) have immense potential due to their utilization of synaptic plasticity and ability to take advantage of temporal correlation and low power consumption. The leaky integration and firing (LIF) model and spike-timing-dependent plasticity (STDP) are the fundamental components of SNNs. Here, a neural device is first demonstrated by zeolitic imidazolate frameworks (ZIFs) as an essential part of the synaptic transistor to simulate SNNs. Significantly, three kinds of typical functions between neurons, the memory function achieved through the hippocampus, synaptic weight regulation and membrane potential triggered by ion migration, are effectively described through short-term memory/long-term memory (STM/LTM), long-term depression/long-term potentiation (LTD/LTP) and LIF, respectively. Furthermore, the update rule of iteration weight in the backpropagation based on the time interval between presynaptic and postsynaptic pulses is extracted and fitted from the STDP. In addition, the postsynaptic currents of the channel directly connect to the very large scale integration (VLSI) implementation of the LIF mode that can convert high-frequency information into spare pulses based on the threshold of membrane potential. The leaky integrator block, firing/detector block and frequency adaptation block instantaneously release the accumulated voltage to form pulses. Finally, we recode the steady-state visual evoked potentials (SSVEPs) belonging to the electroencephalogram (EEG) with filter characteristics of LIF. SNNs deeply fused by synaptic transistors are designed to recognize the 40 different frequencies of EEG and improve accuracy to 95.1%. This work represents an advanced contribution to brain-like chips and promotes the systematization and diversification of artificial intelligence.

4.
J Cancer Res Clin Oncol ; 149(13): 12145-12164, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37428249

ABSTRACT

BACKGROUND: Immunotherapy, represented by immune checkpoint inhibitors, has made significant progress in the treatment of cancer. Numerous studies have demonstrated that antitumor therapies targeting cell death exhibit synergistic effects with immunotherapy. Disulfidptosis is a recently discovered form of cell death, and its potential influence on immunotherapy, similar to other regulated cell death processes, requires further investigation. The prognostic value of disulfidptosis in breast cancer and its role in the immune microenvironment has not been investigated. METHODS: High dimensional weighted gene coexpression network analysis (hdWGCNA) and Weighted co-expression network analysis (WGCNA) methods were employed to integrate breast cancer single-cell sequencing data and bulk RNA data. These analyses aimed to identify genes associated with disulfidptosis in breast cancer. Risk assessment signature was constructed using Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. RESULTS: In this study, we constructed a risk signature by disulfidptosis-related genes to predict overall survival and immunotherapy response in BRCA patients. The risk signature demonstrated robust prognostic power and accurately predicted survival compared to traditional clinicopathological features. It also effectively predicted the response to immunotherapy in patients with breast cancer. Through cell communication analysis in additional single-cell sequencing data, we identified TNFRSF14 as a key regulatory gene. Combining TNFRSF14 targeting and immune checkpoint inhibition to induce disulfidptosis in tumor cells could potentially suppress tumor proliferation and enhance survival in patients with BRCA.


Subject(s)
Breast Neoplasms , Immunotherapy , Regulated Cell Death , Tumor Microenvironment , Single-Cell Analysis , Breast Neoplasms/genetics , Breast Neoplasms/therapy , RNA/genetics , Humans , Female , Immune Checkpoint Inhibitors/therapeutic use , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...