Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.695
Filter
1.
Nat Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824242

ABSTRACT

The vascular endothelial growth factor pathway plays a key role in the pathogenesis of gastric cancer. In the multicenter, double-blind phase 3 FRUTIGA trial, 703 patients with advanced gastric or gastroesophageal junction adenocarcinoma who progressed on fluorouracil- and platinum-containing chemotherapy were randomized (1:1) to receive fruquintinib (an inhibitor of vascular endothelial growth factor receptor-1/2/3; 4 mg orally, once daily) or placebo for 3 weeks, followed by 1 week off, plus paclitaxel (80 mg/m2 intravenously on days 1/8/15 per cycle). The study results were positive as one of the dual primary endpoints, progression-free survival (PFS), was met (median PFS, 5.6 months in the fruquintinib arm versus 2.7 months in the placebo arm; hazard ratio 0.57; 95% confidence interval 0.48-0.68; P < 0.0001). The other dual primary endpoint, overall survival (OS), was not met (median OS, 9.6 months versus 8.4 months; hazard ratio 0.96, 95% confidence interval 0.81-1.13; P = 0.6064). The most common grade ≥3 adverse events were neutropenia, leukopenia and anemia. Fruquintinib plus paclitaxel as a second-line treatment significantly improved PFS, but not OS, in Chinese patients with advanced gastric or gastroesophageal junction adenocarcinoma and could potentially be another treatment option for these patients. ClinicalTrials.gov registration: NCT03223376 .

2.
J Environ Manage ; 362: 121340, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824889

ABSTRACT

Co-pyrolysis of biomass with phosphogypsum (PG) presents an effective strategy for facilitating the recycling of PG resources. However, it is crucial to note the environmental threats arising from the presence of Pb, Cr, Ni, and F in PG. This study investigated the effect of immobilization and transformation of four elements during co-pyrolysis with biomass and its components. The co-pyrolysis experiments were carried out in a tube furnace with a mixture of PG and corn stover (CS), cellulose (C), lignin (L), glucose (G). Co-pyrolysis occurred at varying temperatures (600 °C, 700 °C, 800 °C, and 900 °C) and different addition ratios (10%, 15%, and 20%). The results indicated that an increase in co-pyrolysis temperature was more conducive to the immobilization and transformation of harmful elements in PG, demonstrating significant efficacy in controlling F. Additionally, the addition of biomass components exerts a significant impact on inhibiting product toxicity, with small molecules such as glucose playing a prominent role in this process. The mechanism underlying the control of harmful elements during co-pyrolysis of PG and biomass was characterized by three main aspects. Firstly, biomass components have the potential to melt-encapsulate the harmful elements in PG, leading to precipitation. Secondly, the pyrolysis gas produced during the co-pyrolysis process contributes to the formation of a rich pore structure in the product. Finally, this process aids in transforming hazardous substances into less harmful forms and stabilizing these elements. The findings of this study are instrumental in optimizing the biomass and PG blend to mitigate the environmental impact of their co-pyrolysis products.

3.
Heliyon ; 10(10): e31501, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826739

ABSTRACT

Seven different substrates were prepared by mixing red soil, humus and river sand in different volume ratios and the growth and yield of Amorphophallus muelleri bulbils in different substrates was investigated. The growth of A. muelleri seedlings were tracked during the reproductive period, with measurements taken of indicators such as petiole length, petiole basal diameter and leaf size during the late period of leaf expansion. Number of surviving plants, weights and sizes of corms, and leaf bulbils were recorded after lodging. The results showed that there were differences in the physical and chemical properties of the seven substrates, but all met the growth requirements of A. muelleri. T1 (river sand), T2 (river sand: humus 1:1), T3 (humus), and T7 (river sand: humus: red soil 1:1:1) had higher emergence rates, reaching 95 %. T4 (humus: red soil 1:1) and T7 had better growth, with larger petiole and leaf sizes than other substrates. T3, T4, and T7 had higher yields, with a bulbil yield of 0.30 t hm-2 and a corm yield of 22.06 t hm-2. Compared to the use of a single substrate, whether river sand, humus, or red soil, the proportional mixture of the three test materials improved the physical structure and chemical composition of the substrate, contributing to the growth of A. muelleri. T7 (river sand: humus: red soil 1:1:1) was was found to be the best nursery substrate for A. muelleri.

4.
Org Biomol Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832762

ABSTRACT

Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 µM and 12.12 ± 0.95 µM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.

6.
PLoS Pathog ; 20(5): e1012210, 2024 May.
Article in English | MEDLINE | ID: mdl-38709737

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1008437.].

7.
Small ; : e2401566, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752437

ABSTRACT

Ultrathin carbon nitride pioneered a paradigm that facilitates effective charge separation and acceleration of rapid charge migration. Nevertheless, the dissociation process confronts a disruption owing to the proclivity of carbon nitride to reaggregate, thereby impeding the optimal utilization of active sites. In response to this exigency, the adoption of a synthesis methodology featuring alkaline potassium salt-assisted molten salt synthesis is advocated in this work, aiming to craft a nitrogenated graphitic carbon nitride (g-C3N5) photocatalyst characterized by thin layer and hydrophilicity, which not only amplifies the degree of crystallization of g-C3N5 but also introduces a plethora of abundant edge active sites, engendering a quasi-homogeneous photocatalytic system. Under visible light irradiation, the ultra-high H2O2 production rate of this modified high-crystalline g-C3N5 in pure water attains 151.14 µm h-1. This groundbreaking study offers a novel perspective for the innovative design of highly efficient photocatalysts with a quasi-homogeneous photocatalytic system.

8.
Article in English | MEDLINE | ID: mdl-38753237

ABSTRACT

Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes.

9.
PLoS Med ; 21(5): e1004389, 2024 May.
Article in English | MEDLINE | ID: mdl-38728364

ABSTRACT

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Camptothecin , Cetuximab , Colorectal Neoplasms , Fluorouracil , Leucovorin , Liver Neoplasms , Organoplatinum Compounds , Proto-Oncogene Proteins B-raf , Humans , Cetuximab/administration & dosage , Cetuximab/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Male , Middle Aged , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Female , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Aged , Adult , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Treatment Outcome , ras Proteins/genetics
10.
Pain Manag Nurs ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734526

ABSTRACT

BACKGROUND: The Nurses' Cancer Pain Management Competency Scale (NCPMCS) is a tool to explore nurses' competencies and subjective experiences in cancer pain management, and to help nurses understand their current shortcomings in cancer pain management. The scale, currently available only in English and translated into Chinese for wider adoption abroad, provides a tool for Chinese nurses to assess their level of cancer pain management. Furthermore, based on the scale's specific score, they can evaluate their lack of understanding about cancer pain management, advance research into this area, and enhance their capacity to control cancer pain while providing patient care. OBJECTIVE: The purpose of this study was to translate and localize the new scale, and to measure its reliability and validity. The study was also to provide a way to quickly and accurately measure the competency of cancer pain management among nursing staff in China. METHODS: The Bristling translation approach was used to translate, translate back, and culturally modify the English version of the cancer pain management competency scale for nurses to create the Chinese version. A convenience sample was used for the study, 220 clinical nurses from three Grade III hospitals in Zhengzhou, Henan Province, China, were chosen by convenience sampling. The Chinese version of the scale was used for this investigation. RESULTS: The Cancer Pain Management Competency Scale for Nurses has 14 items over 4 dimensions in its Chinese form. From the exploratory factor analysis, four common components were recovered; the cumulative variance rate was 81.994%, the scale's Cronbach's α coefficient was 0.902, and the Cronbach's α coefficient for each dimension ranged from 0.800 to 0.938. Retest reliability was 0.915, scale content validity was 0.865, and Spearman-Brown's broken half reliability was 0.808. CONCLUSION: Nurses' cancer pain management competency in clinics can be assessed using the Chinese version of the Nurses' Cancer Pain Management Competency Scale, which has strong validity and reliability.

11.
Article in English | MEDLINE | ID: mdl-38777778

ABSTRACT

BACKGROUND: Aristolochic acid nephropathy (AAN) is a rapidly progressive interstitial nephropathy caused by Aristolochic acid (AA). AAN is associated with the development of nephropathy and urothelial carcinoma. It is estimated that more than 100 million people worldwide are at risk of developing AAN. However, the underlying mechanisms driving renal deterioration in AAN remain poorly understood, and the treatment options are limited. METHODS: We obtained GSE27168 and GSE136276 series matrix data from the Gene Expression Omnibus (GEO) related to AAN. Using the R Studio environment, we applied the limma package and WGCNA package to identify co-differently expressed genes (co-DEGs). By GO/KEGG/GSVA analysis, we revealed common biological pathways. Subsequently, co-DEGs were subjected to the String database to construct a protein-protein interaction (PPI) network. The MCC algorithms implemented in the Cytohubba plugin were employed to identify hub genes. The hub genes were cross-referenced with the transcription factor (TF) database to identify hub TFs. Immune infiltration analysis was performed to identify key immune cell groups by utilizing CIBERSORT. The expressions of AAN-associated hub TFs were verified in vivo and in vitro. Finally, siRNA intervention was performed on the two TFs to verify their regulatory effect in AAN. RESULTS: Our analysis identified 88 co-DEGs through the "limma" and "WGCNA" R packages. A PPI network comprising 53 nodes and 34 edges was constructed with a confidence level >0.4. ATF3 and c-JUN were identified as hub TFs potentially linked to AAN. Additionally, expressions of ATF3 and c-JUN positively correlated with monocytes, basophils, and vessels, and negatively correlated with eosinophils and endothelial cells. We observed a significant increase in protein and mRNA levels of these two hub TFs. Furthermore, it was found that siRNA intervention targeting ATF3, but not c-JUN, alleviated cell damage induced by AA. The knockdown of ATF3 protects against oxidative stress and inflammation in the AAN cell model. CONCLUSION: This study provides novel insights into the role of ATF3 in AAN. The comprehensive analysis sheds light on the molecular mechanisms and identifies potential biomarkers and drug targets for AAN treatment.


Subject(s)
Aristolochic Acids , Kidney Diseases , Transcription Factors , Aristolochic Acids/toxicity , Transcription Factors/genetics , Transcription Factors/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Animals , Mice , Humans , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Protein Interaction Maps
12.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772666

ABSTRACT

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Subject(s)
Aptamers, Nucleotide , Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Neonicotinoids , Neonicotinoids/analysis , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Luminescent Measurements/methods , Metal-Organic Frameworks/chemistry , Ruthenium/chemistry , Biosensing Techniques/methods , Limit of Detection , Coordination Complexes/chemistry , Insecticides/analysis
13.
Phys Med Biol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788727

ABSTRACT

Focused ultrasound spinal cord neuromodulation studies have demonstrated the capacity for neuromodulation of the spinal cord in small animals. The safe and efficacious translation of these approaches to human scale requires an understanding of ultrasound propagation and heat deposition within the human spine. To address this, combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level of the cervical spine via two approaches a) the posterior acoustic window between vertebral posterior arches, or b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of 150 0.1 s pulses with a pulse repetition frequency of 0.33 Hz and free-field spatial peak pulse-averaged intensity of 10 W/cm2were simulated for the CT volumes of four subjects and for ±10 mm translational and ±10° rotational source positioning errors. Target pressures ranged between 20% and 70% of free-field spatial peak pressures with the posterior approach, and 20% and 100% with the lateral approach. When the source was optimally positioned with the posterior approach, peak spine heating values were below 1°C, but source mis-positioning resulted in bone heating up to 4°C. Heating with the lateral approach did not exceed 2°C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range in the target pressure achieved per degree of maximum heating between subjects. This study highlights the importance of developing trans-spine ultrasound simulation software for the assurance of subject-specific safety and efficacy of focused ultrasound spinal cord therapies.

14.
Acta Pharmacol Sin ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789495

ABSTRACT

Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.

15.
Neoplasma ; 71(2): 180-192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766853

ABSTRACT

It has been demonstrated that calreticulin (CALR) is expressed abnormally in various tumors and is involved in the occurrence and development of tumors. In this study, CALR and EIF2AK2 expression was measured in the clinical specimens of 39 patients with melanoma. Then, we constructed knockdown and overexpression cell models of CALR and EIF2AK2 and used wound healing and Transwell assays to observe cell migration and invasion. Apoptosis, EDU, and ROS assays were used to measure cell apoptosis and proliferation, as well as ROS levels. The effect of CALR on endoplasmic reticulum stress was detected using endoplasmic reticulum fluorescent probes. Western blotting was used to detect protein levels of CALR, EIF2AK2, ADAR1, and MMP14. The results indicated that CALR and EIF2AK2 expression levels were significantly higher in human melanoma tissues than in adjacent non-tumor tissue. In addition, we found a correlation between CALR and the expression of EIF2AK2 and MMP14, and the experimental results indicated that overexpression of CALR significantly upregulated the expression of EIF2AK2, MMP14, and ADAR1, while knockdown of CALR inhibited their expression. Notably, the knockdown of EIF2AK2 in the CALR overexpression group blocked the upregulation of MMP14 and ADAR1 expression by CALR, and the knockdown of both CALR and EIF2AK2 significantly inhibited MMP14 and ADAR1 expression. In conclusion, CALR and EIF2AK2 play a promoting role in melanoma progression, and knockdown of CALR and EIF2AK2 may be an effective anti-tumor target, and its mechanism may be through MMP14, ADAR1 signaling.


Subject(s)
Adenosine Deaminase , Calreticulin , Cell Proliferation , Matrix Metalloproteinase 14 , Melanoma , RNA-Binding Proteins , Signal Transduction , eIF-2 Kinase , Humans , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Calreticulin/genetics , Calreticulin/metabolism , Cell Line, Tumor , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Cell Movement , Apoptosis , Endoplasmic Reticulum Stress , Female , Disease Progression , Male , Gene Expression Regulation, Neoplastic , Middle Aged
16.
Eur J Oncol Nurs ; 70: 102612, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38795446

ABSTRACT

PURPOSE: To characterize patterns of psychological resilience in gastric cancer survivors using latent profile analyses and to explore the factors influencing these latent profiles based on Kumpfer's resilience framework. METHODS: Five hundred eighty-six gastric cancer survivors were recruited between July 30, 2021, and May 1, 2023. A demographic and clinical characteristics questionnaire, Connor and Davidson's Resilience Scale (CD-RISC), Fear of Progression Questionnaire Short Form (FoP-Q-SF), General Self-efficacy Scale (GSES), Medical Coping Modes Questionnaire (MCMQ), and Social Support Rating Scale (SSRS) were used for the investigation. Latent profile analysis of the resilience of gastric cancer survivors was conducted, and the factors influencing the latent profiles were explored by multivariate logistic regression analysis. RESULTS: A total of 586 questionnaires were collected, and 572 were valid, with an effective recovery rate of 97.61%. The results of latent profile analysis showed that the resilience of gastric cancer survivors was divided into four subgroups, namely, the low-resilience group (18.4%), moderate-resilience group (43.2%), medium-high-resilience group (30.2%), and high-resilience group (8.2%). Multivariate logistic regression analysis showed that fear of disease progression, self-efficacy, medical coping mode and social support were influencing factors of subgroups. CONCLUSIONS: Psychological resilience in gastric cancer survivors is individualized. Nurses should assess risk and protective factors for survivor resilience based on Kumpfer's resilience framework, identify unique needs, and develop new approaches and interventions.

17.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38819423

ABSTRACT

Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.


Subject(s)
Apoptosis , Chondrocytes , DNA Methylation , Hemophilia A , Proto-Oncogene Proteins c-akt , Signal Transduction , Tenascin , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Mice , Hemophilia A/metabolism , Hemophilia A/genetics , Hemophilia A/complications , Tenascin/metabolism , Tenascin/genetics , Extracellular Matrix/metabolism , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology
18.
BMJ ; 385: e078876, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806195

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of tislelizumab added to chemotherapy as first line (primary) treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma compared with placebo plus chemotherapy. DESIGN: Randomised, double blind, placebo controlled, phase 3 study. SETTING: 146 medical centres across Asia, Europe, and North America, between 13 December 2018 and 28 February 2023. PARTICIPANTS: 1657 patients aged ≥18 years with human epidermal growth factor receptor 2 negative locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma, regardless of programmed death-ligand 1 (PD-L1) expression status, who had not received systemic anticancer therapy for advanced disease. INTERVENTIONS: Patients were randomly (1:1) assigned to receive either tislelizumab 200 mg or placebo intravenously every three weeks in combination with chemotherapy (investigator's choice of oxaliplatin and capecitabine, or cisplatin and 5-fluorouracil) and stratified by region, PD-L1 expression, presence or absence of peritoneal metastases, and investigator's choice of chemotherapy. Treatment continued until disease progression or unacceptable toxicity. MAIN OUTCOME MEASURES: The primary endpoint was overall survival, both in patients with a PD-L1 tumour area positivity (TAP) score of ≥5% and in all randomised patients. Safety was assessed in all those who received at least one dose of study treatment. RESULTS: Of 1657 patients screened between 13 December 2018 and 9 February 2021, 660 were ineligible due to not meeting the eligibility criteria, withdrawal of consent, adverse events, or other reasons. Overall, 997 were randomly assigned to receive tislelizumab plus chemotherapy (n=501) or placebo plus chemotherapy (n=496). Tislelizumab plus chemotherapy showed statistically significant improvements in overall survival versus placebo plus chemotherapy in patients with a PD-L1 TAP score of ≥5% (median 17.2 months v 12.6 months; hazard ratio 0.74 (95% confidence interval 0.59 to 0.94); P=0.006 (interim analysis)) and in all randomised patients (median 15.0 months v 12.9 months; hazard ratio 0.80 (0.70 to 0.92); P=0.001 (final analysis)). Grade 3 or worse treatment related adverse events were observed in 54% (268/498) of patients in the tislelizumab plus chemotherapy arm versus 50% (246/494) in the placebo plus chemotherapy arm. CONCLUSIONS: Tislelizumab added to chemotherapy as primary treatment for advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma provided superior overall survival with a manageable safety profile versus placebo plus chemotherapy in patients with a PD-L1 TAP score of ≥5%, and in all randomised patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT03777657.


Subject(s)
Adenocarcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophagogastric Junction , Stomach Neoplasms , Humans , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Female , Middle Aged , Double-Blind Method , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Adult , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use
19.
Biomed Pharmacother ; 175: 116784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781865

ABSTRACT

1,8-Cineole is a bicyclic monoterpene widely distributed in the essential oils of various medicinal plants, and it exhibits significant anti-inflammatory and antioxidant activities. We aimed to investigate the therapeutic effect of 1,8-cineole on anti-Alzheimer's disease by using transgenic Caenorhabditis elegans models. Our studies demonstrated that 1,8-cineole significantly relieved Aß1-42-induced paralysis and exhibited remarkable antioxidant and anti-Aß1-42 aggregation activities in transgenic nematodes CL4176, CL2006 and CL2355. We developed a 1,8-cineole/cyclodextrin inclusion complex, displaying enhanced anti-paralysis, anti-Aß aggregation and antioxidant activities compared to 1,8-cineole. In addition, we found 1,8-cineole treatment activated the SKN-1/Nrf-2 pathway and induced autophagy in nematodes. Our results demonstrated the antioxidant and anti-Alzheimer's disease activities of 1,8-cineole, which provide a potential therapeutic approach for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals, Genetically Modified , Antioxidants , Caenorhabditis elegans , Eucalyptol , Eucalyptol/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Caenorhabditis elegans/drug effects , Antioxidants/pharmacology , Amyloid beta-Peptides/metabolism , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Peptide Fragments/pharmacology , Autophagy/drug effects , Disease Models, Animal
20.
Int J Biol Macromol ; 271(Pt 2): 132632, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797298

ABSTRACT

Current limitations in mechanical performance and foreign body reactions (FBR) often lead to implant failure, restricting the application of bioceramic scaffolds. This study presents a novel 3D-printed scaffold that combines the release of anti-inflammatory drugs with osteogenic stimulation. Initially, the inorganic and organic phases were integrated to ensure the scaffold's mechanical integrity through catechol chemistry and the electrostatic interactions between tannic acid and quaternary ammonium chitosan. Subsequently, layers of polydopamine-encapsulated puerarin-loaded zeolitic imidazolate framework-8 (ZIF-8) were self-assembled onto the stent's surface, creating the drug-loaded scaffold that improved drug release without altering the scaffold's structure. Compared with unloaded scaffolds, the puerarin-loaded scaffold demonstrated excellent osteogenic differentiation properties along with superior anti-inflammatory and osteogenic effects in a range of in vitro and in vivo studies. RNA sequencing clarified the role of the TNF and NF/κB signaling pathways in these effects, further supporting the scaffold's osteogenic potential. This study introduces a novel approach for creating drug-loaded scaffolds, providing a unique method for treating cancellous bone defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...