Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1395731, 2024.
Article in English | MEDLINE | ID: mdl-38742205

ABSTRACT

Purpose: Early gastrointestinal tumors can be removed by endoscopic procedures. Endoscopic mucosal dissection (ESD) requires submucosal fluid injection to provide mucosal elevation and prevent intraoperative perforation. However, the clinically applied normal saline mucosal elevation height is low for a short time, which often requires multiple intraoperative injections that increase the inconvenience and procedure time. In addition, recently researched submucosal injection materials (SIM) suffer from complex preparation, poor economy, and poor biocompatibility. Therefore, there is an urgent need for a new type of SIM that can provide long, safe and effective mucosal elevation in support of the endoscopic procedures. Methods: The FS hydrogel is based on polyethylene-polypropylene glycol (F-127) mixed with sodium alginate (SA). The different physicochemical properties of FS hydrogels were characterized through various experiments. Afterward, various biosafety assessments were carried out. Finally, the performance of FS hydrogels was evaluated by in vitro submucosal injection and in vivo swine ESD. Results: The experimental results show that the FS hydrogel is liquid at room temperature, making it easy to inject, and when injected under the mucosa, it undergoes temperature-induced cross-linking, transforming from a liquid to a solid state to provide long-lasting mucosal augmentation. At the same time, the FS hydrogel exhibits controllable gelation, stability, and biocompatibility. The results of in vitro submucosal injections and in vivo ESD procedures showed that FS achieves high mucosal augmentation and provides good submucosal cushioning in the long term. Conclusion: In summary, the F-127/SA hydrogel is simple to synthesize, cost-effective, safe, easy to store, and able to assist ESD well from the perspective of practical clinical problems, indicating that the FS hydrogel can be an ideal potent submucosal injection substitution.

2.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
3.
Cancer Invest ; 42(3): 212-225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527848

ABSTRACT

This study aimed to develop prognostic prediction models for patients diagnosed with synchronous thyroid and breast cancer (TBC). Utilizing the SEER database, key predictive factors were identified, including T stage of thyroid cancer, T stage of breast cancer, M stage of breast cancer, patient age, thyroid cancer surgery type, and isotope therapy. A nomogram predicting 5-year and 10-year survival rates was constructed and validated, exhibiting strong performance (C-statistic: 0.79 in the development cohort (95% CI: 0.74-0.84), and 0.82 in the validation cohort (95% CI: 0.77-0.89)). The area under the Receiver Operator Characteristic (ROC) curve ranged from 0.798 to 0.883 for both cohorts. Calibration and decision curve analyses further affirmed the model's clinical utility. Stratifying patients into high-risk and low-risk groups using the nomogram revealed significant differences in survival rates (P < 0.0001). The successful development and validation of this nomogram for predicting 5-year and 10-year survival rates in patients with synchronous TBC hold promise for similar patient populations, contributing significantly to cancer research.


Subject(s)
Breast Neoplasms , Nomograms , SEER Program , Thyroid Neoplasms , Humans , Female , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Middle Aged , Prognosis , Aged , Neoplasms, Multiple Primary/mortality , Neoplasms, Multiple Primary/pathology , Adult , Male , Survival Rate , Neoplasm Staging , ROC Curve
4.
PeerJ ; 12: e16848, 2024.
Article in English | MEDLINE | ID: mdl-38371374

ABSTRACT

Background: The Index of Consciousness (IoC) is a new monitoring index of anesthesia depth reflecting the state of consciousness of the brain independently developed by China. The research on monitoring the depth of anesthesia mainly focuses on propofol, and bispectral index (BIS) is a sensitive and accurate objective index to evaluate the state of consciousness at home and abroad. This study mainly analyzed the effect of IoC on monitoring the depth of sevoflurane anesthesia and the consistency and accuracy with BIS when monitoring sevoflurane maintenance anesthesia. Objective: To investigate the monitoring value of the Index of Consciousness (IoC) for the depth of sevoflurane anesthesia in laparoscopic surgery. Methods: The study population consisted of 108 patients who experienced elective whole-body anesthesia procedures within the timeframe of April 2020 to June 2023 at our hospital. Throughout the anesthesia process, which encompassed induction and maintenance using inhaled sevoflurane, all patients were diligently monitored for both the Bispectral Index (BIS) and the Index of Consciousness (IoC). We conducted an analysis to assess the correlation between IoC and BIS throughout the anesthesia induction process and from the maintenance phase to the regaining of consciousness. To evaluate the predictive accuracy of IoC and BIS for the onset of unconsciousness during induction and the return of consciousness during emergence, we employed receiver operating characteristic (ROC) curve analysis. Results: The mean difference between BIS and IoC, spanning from the pre-anesthesia induction phase to the completion of propofol induction, was 1.3 (95% Limits of Agreement [-53.4 to 56.0]). Similarly, during the interval from the initiation of sevoflurane inhalation to the point of consciousness restoration, the average difference between BIS and IoC was 0.3 (95% LOA [-10.8 to 11.4]). No statistically significant disparities were observed in the data acquired from the two measurement methodologies during both the anesthesia induction process and the journey from maintenance to the regaining of consciousness (P > 0.05). The outcomes of the ROC curve analysis disclosed that the areas under the curve (AUC) for prognosticating the occurrence of loss of consciousness were 0.967 (95% CI [0.935-0.999]) for BIS and 0.959 (95% CI [0.924-0.993]) for IoC, with optimal threshold values set at 81 (sensitivity: 88.10%, specificity: 92.16%) and 77 (sensitivity: 79.55%, specificity: 95.45%) correspondingly. For the prediction of recovery of consciousness, the AUCs were 0.995 (95% CI [0.987-1.000]) for BIS and 0.963 (95% CI [0.916-1.000]) for IoC, each associated with optimal cutoff values of 76 (sensitivity: 92.86%, specificity: 100.00%) and 72 (sensitivity: 86.36%, specificity: 100.00%) respectively. Conclusion: The monitoring of sevoflurane anesthesia maintenance using IoC demonstrates a level of comparability to BIS, and its alignment with BIS during the maintenance phase of sevoflurane anesthesia is robust. IoC displays promising potential for effectively monitoring the depth of anesthesia.


Subject(s)
Anesthetics, Inhalation , Laparoscopy , Methyl Ethers , Propofol , Humans , Sevoflurane , Propofol/pharmacology , Consciousness , Anesthetics, Inhalation/pharmacology , Methyl Ethers/pharmacology , Monitoring, Intraoperative/methods , Anesthesia, General/methods
5.
Neuroimmunomodulation ; 29(2): 161-170, 2022.
Article in English | MEDLINE | ID: mdl-34518490

ABSTRACT

INTRODUCTION: Neuropathic pain (NP) is one of the most severe chronic pain types. In recent years, more and more studies have shown that long noncoding RNA (LncRNA) plays a key role in a variety of human diseases, including NP. However, the role of LncRNA prostate cancer-associated transcript 19 (PCAT19) in NP and its specific mechanism remain unclear. METHODS: A chronic constrictive injury (CCI) rat model was established. Rat paw withdrawal threshold and paw withdrawal latency were used to evaluate the neuronal pain behavior of rats in this model. mRNA expression of PCAT19, neuroinflammatory factor, microRNA (miR)-182-5p, and Jumonji domain containing 1A (JMJD1A) were detected by quantitative real-time PCR. ELISA analysis was used to detect inflammatory factor protein expression. Dual-luciferase reporter assay was used to evaluate the targeting relationship between genes. RESULTS: PCAT19 was continuously upregulated in CCI rats. miR-182-5p was the target of PCAT19, and miR-182-5p was increased after PCAT19 knockdown. NP behaviors such as mechanical ectopic pain and thermal hyperalgesia as well as neuroinflammation can be reduced by knocking down PCAT19. However, the injection of miR-182-5p antagomir significantly reversed the level of the NP behaviors and neuroinflammation caused by PCAT19 knockdown. Besides, dual-luciferase reporter assay showed that JMJD1A was the target gene of miR-182-5p. The level of JMJD1A in CCI rats increased with time. After PCAT19 knockdown, JMJD1A was significantly decreased, but inhibition of miR-182-5p can reverse its levels. CONCLUSION: This study shows that PCAT19 plays a role in NP by targeting the miR-182-5p/JMJD1A axis, and PCAT19 can be used as a new therapeutic target for NP.


Subject(s)
MicroRNAs , Neuralgia , RNA, Long Noncoding , Animals , Constriction , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Rats , Rats, Sprague-Dawley
6.
J Biomater Sci Polym Ed ; 24(1): 1-14, 2013.
Article in English | MEDLINE | ID: mdl-22244298

ABSTRACT

Core-shell structured beads were fabricated from chitosan (CS)/organic rectorite (OREC) composites and alginate (ALG) in Ca(2+) aqueous solutions with different mixing ratios by a cross-linking process. The mechanical properties, surface and internal morphology, intercalation structure between CS and OREC, porosity and pore size distribution, bovine serum albumin (BSA) encapsulation efficiency and its controllable release ability were investigated. Optical microscopy, scanning electron microscopy and transmission electron microscopy showed that the core-shell structure was generated in the beads. The Fourier transform infrared spectra results implied the presence of electrostatic and hydrogen-bonding interaction between CS and OREC. The energy-dispersive X-ray and X-ray photoelectron spectroscopy results verified the existence of OREC in the beads. Small-angle X-ray diffraction results confirmed that the interlayer of OREC was intercalated by CS chains successfully, and the interlayer distance increased from 2.42 to 2.60 nm. The BSA encapsulation and release test indicated that the beads released the drug continuously. OREC could not only avoid the burst release phenomenon in the first period but also improve the utilization efficacy of the drug. When the ratio of CS/OREC was 6:1 and CS-OREC/ALG was 2:1, the beads were better for drug released in stomach, and when CS/OREC was 12:1 and CS-OREC/ALG was 2:1, the beads were better for drug released in stomach than in intestine.


Subject(s)
Alginates/chemistry , Aluminum Silicates/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Minerals/chemistry , Animals , Calcium/chemistry , Cattle , Cross-Linking Reagents/chemistry , Glucuronic Acid/chemistry , Hardness , Hexuronic Acids/chemistry , Particle Size , Porosity , Serum Albumin, Bovine/administration & dosage
7.
Carbohydr Polym ; 90(4): 1656-63, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-22944430

ABSTRACT

Organic rectorite (OREC) was used to prepare intercalated composites with chitosan. The negatively charged cellulose acetate (CA) fibrous mats were modified with multilayers of the positively charged chitosan or chitosan-OREC intercalated composites and the negatively charged bovine serum albumin (BSA) via electrostatic layer-by-layer (LBL) self-assembly technique. The morphology and protein delivery properties of the resultant samples were investigated by regulating the number of deposition bilayers, the outermost layer and the composition of coating bilayers. The thickness of LBL films coated CA mats increased as the number of bilayers was increased and OREC was added. X-ray photoelectron spectroscopy indicated that chitosan and OREC were deposited on CA fibers. Small angle X-ray diffraction patterns showed that OREC was intercalated by chitosan. The in vitro BSA encapsulation and release experiments demonstrated that OREC could affect the degree of protein loading capacity and release efficiency of the LBL films coating.


Subject(s)
Aluminum Silicates/chemistry , Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Intercalating Agents/chemistry , Macromolecular Substances/chemistry , Minerals/chemistry , Serum Albumin, Bovine/metabolism , Silicates/chemistry , Aluminum Silicates/metabolism , Animals , Cattle , Chitosan/metabolism , Coated Materials, Biocompatible/metabolism , Electrochemistry , Intercalating Agents/metabolism , Macromolecular Substances/metabolism , Minerals/metabolism , Photoelectron Spectroscopy , Silicates/metabolism , X-Ray Diffraction
8.
Int J Pharm ; 438(1-2): 258-65, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22982258

ABSTRACT

Organic rectorite (OREC) was added in the quaternized chitosan (QC)/alginate (ALG) nanoparticles using an ionic gelation method to fabricate a controllable release system for proteins for the first time. The morphology of nanoparticles, the intercalated structure of OREC, bovine serum albumin encapsulation efficiency and in vitro release properties were investigated. Fourier transform infrared spectra, energy dispersive X-ray, X-ray photoelectron spectroscopy, small angle X-ray diffraction and size distribution analysis were performed to characterize the composite nanoparticles. With the addition of OREC, the encapsulation efficiency and the loading capacity of nanoparticles had increased from 21.2% to 44.9% and from 13.7% to 25.0%, respectively. In addition, the rapid initial release was inhibited successfully from 20.15% to 11.07% in stimulated gastric fluid and from 14.69% to 4.52% in stimulated intestinal fluid. The results verified that the addition of OREC could make these nanoparticles effective carriers to encapsulate drug and slow the drug controlled release of nanoparticles.


Subject(s)
Alginates/chemistry , Aluminum Silicates/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Minerals/chemistry , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Delayed-Action Preparations/chemistry , Gastric Juice/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
J Hazard Mater ; 221-222: 100-8, 2012 Jun 30.
Article in English | MEDLINE | ID: mdl-22551636

ABSTRACT

Degradation of hexazinone has been investigated by means of photocatalysis of mixed-phase crystal nano-TiO(2). Influences of adsorption, amount of nano-TiO(2), pH and irradiation time on the photocatalytic process are studied. Results show that hexazinone is totally degraded within 40min of irradiation under pH neutral conditions. This compares favorably with Degussa P25 TiO(2) when conducted under the same experimental conditions. Preliminary photocatalytic kinetic information for hexazinone degradation is proposed. First order kinetics is obtained for the adsorption and photocatalytic degradation reactions, which fit the Langmuir-Hinshelwood model. A rapid, sensitive and accurate UPLC-MS/MS technique is developed and utilized to determine the level of hexazinone in water in support of the degradation kinetics study. The results indicate a limit of detection (LOD) at 0.05µg/l and the recoveries between 90.2 and 98.5% with relative standard deviations (RSD) lower than 12%. A LC-MS/MS technique is used to trace the degradation process. Complete degradation is achieved into final products including nontoxic water, carbon dioxide and urea. A probable pathway for the total photocatalytic degradation of hexazinone is proposed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Photochemistry , Tandem Mass Spectrometry/methods , Triazines/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Microscopy, Electron, Transmission
10.
Brain Res ; 1436: 13-9, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22197032

ABSTRACT

Brain homeostasis is maintained by the blood-brain barrier (BBB), which prevents the entrance of circulating molecules and immune cells into the central nervous system. The BBB is formed by specialized brain endothelial cells that are connected by tight junctions (TJ). Previous studies have proven that the Tat protein of human immunodeficiency virus type 1 (HIV-1) alters TJ protein expression. However, the mechanisms by which the alterations occur have not been characterized in detail. In this study, primary human brain microvascular endothelial cells (HBMEC) were exposed to recombinant HIV-1 Tat protein, and the effects on occludin were observed. Tat treatment decreased occludin mRNA and protein levels. This effect was partially abrogated by addition of the RhoA inhibitor C3 exoenzyme and the p160-Rho-associated coiled kinase (ROCK) inhibitor Y-27632. Meanwhile, Tat also induced MMP-9 expression. RNA interference targeting MMP-9 reduced both the paracellular permeability of Tat-treated HBMEC and the concentration of soluble occludin in supernatants from the cells. Taken together, these results show that the HIV-1 Tat protein disrupts BBB integrity, at least in part by decreasing the production of occludin.


Subject(s)
Blood-Brain Barrier/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Brain/metabolism , Cells, Cultured , Endothelial Cells , HIV Infections/complications , Humans , Occludin , RNA, Small Interfering/metabolism , rhoA GTP-Binding Protein/metabolism
11.
J Surg Res ; 164(1): 131-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20959170

ABSTRACT

BACKGROUND: The aim of this study was to investigate the post-treatment effect of intravenous hyperoxygenated solution (HOS) on pulmonary parameters in rabbits whole-body-exposed to the toxic gas phosgene. MATERIALS AND METHODS: Twenty-four New Zealand rabbits were divided into four groups randomly: rabbits were exposed whole-body to either filtered room air or 539 ppm phosgene for 5 minutes followed by room air washout for 5 minutes. Phosgene-exposed group (exposed to phosgene without treatment, PH group); Control group (exposed to air, Control group); Lactate Ringer's solution (LRS)-treated group (intravenous infusion of LRS by 30 ml·kg-1 after phosgene exposure, LRS group); Hyperoxygenated solution (HOS)-treated group (intravenous infusion of HOS after phosgene exposure by 30 mL·kg-1, HOS group). Arterial blood was collected for blood gas analysis at 1, 3, 8, and 12 hours after phosgene or air exposure. Rabbits were put to death 12 hours after exposure. Lung edema was assessed gravimetrically by measuring tissue wet/dry weight ratio (W/D) and lung coefficient (LC). Bronchoalveolar lavage (BAL) was performed and fluid was analyzed for total maloaldehyde (MDA), glutathione peroxidase (GSH-Px), and protein concentration. Lungs were perfused with saline to remove blood, snap-frozen in liquid nitrogen (N2), analyzed for tissue reduced glutathione (GSH) and oxidized glutathione (GSSG). Parts of lung tissues were reserved for histopathology examination. RESULTS: In the PH, LRS, and HOS groups, phosgene inhalation caused serious lung edema, W/D and LC, lung tissue GSSG, BALF MDA, and protein content increased significantly. Meanwhile, PaO2, lung tissue GSH, and BALF GSH-Px decreased markedly. However, after HOS treatment in the HOS group, PaO2 was clearly higher than that in the PH group and LRS group at 3, 8, 12 hours (P < 0.01). W/D and LC, lung tissue GSSG, BALF MDA, and protein content in the HOS group were apparently lower than that in the PH group and LRS group (P < 0.01). In the HOS group, lung tissue GSH and BALF GSH-Px increased compared with both PH and LRS group, respectively. There was no difference on lung tissue GSH among the PH, LRS, and HOS groups (P > 0.05). CONCLUSIONS: Intravenous HOS infusion after phosgene exposure can clearly lessen phosgene-induced lung edema formation, lipid peroxidatic reaction, and ameliorate hypoxemia associated with phosgenismus; it is a safe, simple, and effective measure to protect animals from phosgene-induced lung injury.


Subject(s)
Acute Lung Injury/therapy , Chemical Warfare Agents/toxicity , Oxygen/pharmacology , Phosgene/toxicity , Pulmonary Edema/therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid , Glutathione/metabolism , Glutathione Disulfide/metabolism , Infusions, Intravenous , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Malondialdehyde/metabolism , Oxygen/blood , Pulmonary Edema/chemically induced , Pulmonary Edema/pathology , Rabbits , Solutions/pharmacology
12.
Nanoscale Res Lett ; 5(9): 1437-1441, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20730129

ABSTRACT

In this work, porous TiO(2) hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH(4)HCO(3) as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m(2)/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200 degrees C due to its high surface area.

13.
Atherosclerosis ; 208(2): 396-405, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19682689

ABSTRACT

Natural IgM antibodies against oxidized low-density lipoprotein (oxLDL) can inhibit the binding of oxLDL to macrophages and bacterial infection may deteriorate the pathogenesis of atherosclerosis. However, little is known about the molecular mechanisms underlying the action of bacterial lipopolysaccharide (LPS) in the binding of oxLDL to macrophages, contributing to the formation of foam macrophages. In this study, human monocytes-derived macrophages were cultured and incubated with purified human anti-oxLDL IgM antibodies (HAO-IgM), lipopolysaccharide (LPS) and oxLDL. The HAO-IgM were found specifically inhibited the binding of CuoxLDL to naïve macrophages but failed to inhibit the binding of CuoxLDL to LPS-activated macrophages and promoted the formation of CuoxLDL-mediated foam macrophages. Furthermore, the HAO-IgM F(ab')(2) or pre-incubation with unrelated IgM inhibited the binding of HAO-IgM/CuoxLDL complex to LPS-activated macrophages, suggesting that Fcalpha/mu receptor (Fcamr) may be responsible for the binding of HAO-IgM/CuoxLDL complex to LPS-activated macrophages. Indeed, LPS up-regulated the expression of Fcamr in macrophages in a dose- and time-dependent manner, which was diminished by treatment with anti-TLR4. In addition, LPS induced the phosphorylation of p38MAPK and translocation of NF-kappaB p65, contributing to the up-regulated expression of Fcamr in macrophages as treatment with specific inhibitor for p38MAPK (SB203580) or NF-kappaB (PDTC) attenuated the up-regulation of Fcalpha/mu receptor expression induced by LPS in macrophages. Inhibition of p38MAPK and NF-kappaB decreased the foam cells formation increased by Fcamr expression. These data demonstrated that LPS, through the TLR4 receptor, activated the p38MAPK and NF-kappaB pathways and up-regulate the expression of Fcamr in human macrophages, which promotes the binding of IgM/CuoxLDL complex to macrophages and the formation of foam cells. Therefore, our findings provide a new explanation why bacterial infection deteriorates the pathogenesis of atherosclerosis.


Subject(s)
Antigens, CD/metabolism , Gene Expression Regulation , Immunoglobulin M/chemistry , Lipopolysaccharides/metabolism , Macrophages/metabolism , Receptors, Fc/metabolism , Foam Cells/cytology , Gene Silencing , Humans , Lipoproteins, LDL/metabolism , Models, Biological , NF-kappa B/metabolism , Phosphorylation , RNA, Small Interfering/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Hybridoma (Larchmt) ; 27(1): 54-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18294078

ABSTRACT

Low-density lipoprotein (LDL) is a major trigger of atherosclerotic lesions. Here we report the production of natural mouse IgM monoclonal antibodies (MAbs) against LDL with high specificity and activity, which could provide a potential value for research on lipid metabolism and atherosclerosis progression. BALB/c mice were raised in specific pathogen-free conditions and fed a high cholesterin diet; the splenocytes from these mice were directly fused with Sp2/0 myeloma cells using standard hybridoma production techniques. Resulting hybridomas producing anti-LDL antibodies were screened by enzyme-linked immunosorbent assay (ELISA) and isotyped. As a result, two hybridoma cell lines, named 5G8 and 2H7, were developed, which could secrete anti-LDL MAbs stably. Both of them belonged to the IgM subclass. The specificity of the MAb was determined based on its activity in Western blot and immunoprecipitation analysis.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Immunoglobulin M/isolation & purification , Lipoproteins, LDL/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Cholesterol, Dietary/administration & dosage , Enzyme-Linked Immunosorbent Assay/methods , Humans , Hybridomas/immunology , Immunoglobulin M/immunology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...