Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(28): e2402434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38684233

ABSTRACT

To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Animals , Humans , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology
2.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416810

ABSTRACT

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Diagnostic Imaging , Neoplasms/drug therapy , Photochemotherapy/methods
3.
Lab Chip ; 23(18): 4044-4051, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37606082

ABSTRACT

Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 µm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth.


Subject(s)
Hydrogels , Mycelium , Humidity , Nutritional Status , Temperature
4.
ACS Nano ; 16(12): 20151-20162, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36250626

ABSTRACT

Aggregation-induced emission (AIE) nanoparticles have been widely applied in photodynamic therapy (PDT) over the past few years. However, amorphous nanoaggregates usually occur in their preparation, resulting in loose packing with disordered molecular structures. This still allows free intramolecular motions, thus leading to limited brightness and PDT efficiency. Herein, we report deep-red AIE nanocrystals (NCs) of DTPA-BS-F by following the facile method of nanoprecipitation. It is observed that DTPA-BS-F NCs possess not only a high photoluminescence quantum yield value of 8% in the deep-red region (600-850 nm) but also an impressive reactive oxygen species (ROS) generation efficiency of up to 69%. Moreover, DTPA-BS-F NCs targeting dual-organelles of lysosomes and nucleus to generate ROS are also achieved, thus boosting the PDT effect in cancer therapy both in vitro and in vivo. This work provides high-performance AIE NCs to simultaneously target two organelles for efficient photodynamic therapy, indicating their promising application in all-in-one theranostic platforms.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Precision Medicine , Reactive Oxygen Species , Organelles , Nanoparticles/chemistry , Pentetic Acid , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Theranostic Nanomedicine/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
5.
J Mech Behav Biomed Mater ; 131: 105248, 2022 07.
Article in English | MEDLINE | ID: mdl-35525065

ABSTRACT

The respirator as one of the personal protective equipment is essential for industrial activities (e.g., mining, painting, woodcutting, manufacturing) for protection from contaminants in the air and during the Covid-19 pandemic to protect the wearer from infection. The respirators nowadays are commonly made of rigid plastic. They are expensive, cumbersome, and not comfortable to wear. The many components with complex structures prevent it from cleaning and reusing. We develop a practical and scalable strategy to create customized respirators with durability using computational modeling and 3D printing. It is shown that by morphing the shape according to the user's photo, the respirator is designed to fit a user's face without air leaks. Using a printing-mold-casting method, this respirator can be manufactured by silicone rubber with accuracy, which is highly durable, with its mechanics primarily not affected by sterilization. These features provide the current respirator adaptivity and convenience in carrying and storing, as well as more comfort for long-time wearing.


Subject(s)
COVID-19 , Respiratory Protective Devices , COVID-19/prevention & control , Equipment Design , Humans , Pandemics/prevention & control , Printing, Three-Dimensional , Ventilators, Mechanical
6.
ACS Nano ; 16(4): 5932-5942, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35344346

ABSTRACT

Organelle-specific imaging and dynamic tracking in ultrahigh resolution is essential for understanding their functions in biological research, but this remains a challenge. Therefore, a facile strategy by utilizing anion-π+ interactions is proposed here to construct an aggregation-induced emission luminogen (AIEgen) of DTPAP-P, not only restricting the intramolecular motions but also blocking their strong π-π interactions. DTPAP-P exhibits a high photoluminescence quantum yield (PLQY) of 35.04% in solids, favorable photostability and biocompatibility, indicating its potential application in super-resolution imaging (SRI) via stimulated emission depletion (STED) nanoscopy. It is also observed that this cationic DTPAP-P can specifically target to mitochondria or nucleus dependent on the cell status, resulting in tunable organelle-specific imaging in nanometer scale. In live cells, mitochondria-specific imaging and their dynamic monitoring (fission and fusion) can be obtained in ultrahigh resolution with a full-width-at-half-maximum (fwhm) value of only 165 nm by STED nanoscopy. This is about one-sixth of the fwhm value in confocal microscopy (1028 nm). However, a migration process occurs for fixed cells from mitochondria to nucleus under light activation (405 nm), leading to nucleus-targeted super-resolution imaging (fwhm= 184 nm). These findings indicate that tunable organelle-specific imaging and dynamic tracking by a single AIEgen at a superior resolution can be achieved in our case here via STED nanoscopy, thus providing an efficient method to further understand organelle's functions and roles in biological research.


Subject(s)
Mitochondria , Organelles , Humans , HeLa Cells , Microscopy, Confocal , Fluorescent Dyes
7.
Chem Sci ; 13(5): 1270-1280, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35222910

ABSTRACT

Organic nanocrystals (NCs) with high brightness are highly desirable for biological imaging. However, the preparation of NCs by a facile and fast method is still challenging. Herein, an aggregation-induced emission (AIE) luminogen of 4,4'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (DTPA-BT-F) in the deep-red region is designed with intensive crystalline features to obtain NCs by kinetically controlled nanoprecipitation. The prepared AIE NCs with high brightness and good photo-stability are then applied in super-resolution imaging via stimulated emission depletion (STED) nanoscopy. As observed, the nanostructures in lysosomes of both fixed and live cells are well visualized with superior lateral resolutions under STED nanoscopy (full width at half maximum values, 107 and 108 nm) in contrast to that in confocal imaging (548 and 740 nm). More importantly, dynamic monitoring and long-term tracking of lysosomal movements in live HeLa cells, such as lysosomal contact, can also be carried out by using DTPA-BT-F NCs at a superior resolution. To the best of our knowledge, this is the first case of AIE NCs prepared by nanoprecipitation for STED nanoscopy, thus providing a new strategy to develop high performance imaging agents for super-resolution imaging.

8.
Chem Soc Rev ; 50(1): 667-690, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33313632

ABSTRACT

Stimulated emission depletion (STED) nanoscopy is a promising fluorescence microscopy to detect unresolvable structures at the nanoscale level and then achieve a superior imaging resolution in materials science and biological research. However, in addition to the optimization of the microscope, luminescent materials in STED nanoscopy are also of great significance to obtain imaging, visualization and even long-term tracking at an ultra-high resolution (less than 100 nm), but this is seldom summarized. Based on this consideration, recent progress on STED fluorophores for super-resolution imaging is outlined here, including inorganic fluorophores, fluorescent proteins, organic luminescent materials, aggregation-induced emission (AIE) luminogens, and fluorescent nanoparticles. Characteristics of these aforementioned STED fluorophores are also included and compared to provide a deep understanding of the relationship between the properties in luminescent materials and their performance in STED imaging. According to the results on such luminescent materials, it is anticipated that guidelines to select proper probes and even develop new materials for super-resolution imaging via STED nanoscopy will be provided here, finally promoting the development of super-resolution imaging in both materials science and biological research.


Subject(s)
Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Nanoparticles/chemistry , Nanotechnology , Quantum Dots/chemistry , Animals , Humans , Microscopy, Fluorescence , Particle Size , Surface Properties
9.
Comb Chem High Throughput Screen ; 24(7): 1017-1030, 2021.
Article in English | MEDLINE | ID: mdl-32940176

ABSTRACT

Stimulated emission depletion (STED) microscopy has become a useful tool for visualization and dynamic monitoring at an ultra-high resolution in biological research and material science. For STED technology, fluorescent probes are irreplaceable in the imaging process. Among these probes, organic fluorescent probes have superior photo-stability, high brightness, large Stokes' shifts and excellent biocompatibility, thus are widely applied in STED microscopy. Based on this consideration, this review presents the recent advances on organic fluorescent probes for STED microscopy, including typical organic fluorescent probes, aggregation-induced emission luminogens (AIEgens), polymer dots, and other nanoparticles. The applications of organic fluorescent probes in biological imaging, such as in live-cell, live-tissue, and in vivo imaging, as well as in material monitoring at the nanoscale using STED microscopy, are also included. This review provides the guidelines for the design of new materials that can be used to enhance the imaging performance of STED microscopy, thus leading to real-world applications.


Subject(s)
Fluorescent Dyes/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence , Molecular Structure , Optical Imaging
10.
Preprint in English | medRxiv | ID: ppmedrxiv-20048439

ABSTRACT

With the rapid development of mobile Internet in China, the information of the epidemic is full-time and holographic, and the role of information diffusion in epidemic control is increasingly prominent. At the same time, the publicity of all kinds of big data also provides the possibility to explore the impact of media information diffusion on disease transmission. This paper explores the mechanism of the influence of information diffusion on the spread of the novel coronavirus, develops a model of the interaction between information diffusion and disease transmission based on the SIR model, and empirically tests the role and mechanism of information diffusion in the spread of COCID-19 by using econometric method. The result shows that there was a significant negative correlation between the information diffusion and the spread of the novel coronavirus; The result of robust test shows that the spread of both epidemic information and protection information hindered the further spread of the epidemic.

11.
Chem Sci ; 11(31): 8157-8166, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-34123087

ABSTRACT

Currently, bright aggregation-induced emission luminogens (AIEgens) with high photoluminescence quantum yields (PLQYs) in the NIR-II region are still limited, and thus an efficient strategy to enhance NIR-II fluorescence performance through tuning molecular aggregation is proposed here. The synthesized donor-acceptor tailored AIEgen (DTPA-TBZ) not only exhibits an excellent absorptivity in the NIR-I region, but also good fluorescence signals in the NIR-II region with an emission extending to 1200 nm. Benefiting from such improved intramolecular restriction and aggregation, a significant absolute PLQY value of 8.98% was obtained in solid DTPA-TBZ. Encouragingly, the resulting AIE dots also exhibit a high relative PLQY of up to 11.1% with IR 26 as the reference (PLQY = 0.5%). Finally, the AIE dots were applied in high performance NIR-II fluorescence imaging and NIR-I photoacoustic (PA) imaging: visualization of abdominal vessels, hind limb vasculature, and cerebral vessels with high signal to background ratios was performed via NIR-II imaging; Moreover, PA imaging has also been performed to clearly observe tumors in vivo. These results demonstrate that by finely tuning molecular aggregation in DTPA-TBZ, a good NIR-I absorptivity and a highly emissive fluorescence in the NIR-II region can be achieved simultaneously, finally resulting in a promising dual-modal imaging platform for real-world applications to achieve precise cancer diagnostics.

12.
Chemistry ; 26(12): 2741-2748, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31886910

ABSTRACT

To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.


Subject(s)
Anhydrides/chemistry , Dermatoglyphics , Fluorescent Dyes/chemical synthesis , Perylene/analogs & derivatives , Picrates/analysis , Density Functional Theory , Humans , Limit of Detection , Molecular Structure , Perylene/chemistry , Spectrometry, Fluorescence
13.
ACS Nano ; 13(10): 11863-11873, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31584798

ABSTRACT

Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, in situ, and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, in situ, and dynamic imaging at super-resolution using STED nanoscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...