Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
Neural Regen Res ; 20(7): 1900-1918, 2025 Jul 01.
Article in English | MEDLINE | ID: mdl-38993125

ABSTRACT

The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.

2.
Respir Res ; 25(1): 328, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223619

ABSTRACT

BACKGROUND: The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS: To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS: Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.


Subject(s)
Fetal Growth Retardation , GTP Phosphohydrolases , Rats, Sprague-Dawley , Animals , Fetal Growth Retardation/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Rats , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/physiopathology , Mitochondrial Dynamics/physiology , Male , Cells, Cultured , Pregnancy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/pathology , Animals, Newborn , Mitochondrial Proteins
3.
Front Hum Neurosci ; 18: 1464152, 2024.
Article in English | MEDLINE | ID: mdl-39296915

ABSTRACT

Introduction: Freezing of gait (FOG) is a disabling and heterogeneous symptom in patients with Parkinson's disease (PD). Among them, dopamine-induced FOG is rare and difficult to identify. The treatment of dopamine-induced FOG is complex. Case presentation: We herein presented a case of PD patient who complicated with refractory FOG. It was identified as dopamine-induced FOG during levodopa challenge test. Her symptoms were alleviated after we reduced the total equivalent dosage of levodopa. Conclusion: Our report emphasizes the importance of levodopa challenge test in identifying different types of FOG, which is very important for further adjusting treatment.

4.
Psychol Health ; : 1-16, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219218

ABSTRACT

OBJECTIVE: This study aimed to unravel micro-processes that link information seeking to subsequent affective well-being (i.e., positive and negative affect) at the within-person level, as well as the role of worry as a mediator in this relationship. METHODS AND MEASURES: Within the initial weeks following the Chinese government's relaxation of its epidemic control measures, 184 participants completed experience sampling methods on information seeking, COVID-related worry, and affective well-being three times a day for 14 days. RESULTS: According to dynamic structural equation models, information seeking was associated with high negative affect but not with low positive affect. COVID-related worry acted as a full mediator between information seeking at the previous time point (approximately 5 h ago) and the current negative affect, but not in positive affect. CONCLUSION: These findings suggested that the impact of information seeking on affective well-being was different for the two dimensions of affect. Furthermore, the persistent impact of information seeking on negative affect was attributed to the indirect effect of worry, suggesting that worry should be a point of focus for intervention to mitigate the potentially negative effects of information seeking within the context of the public health crises.

5.
Heliyon ; 10(14): e34352, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114032

ABSTRACT

The bile acids (BA) in the intestine promote inflammation by interacting with immune cells, playing a crucial role in the progression of UC, but the specific mechanism between the two remains elusive. This study aims to explore the relationship between BAMand UC inflammation and determine its potential mechanisms.Firstly, we employed a hybrid approach using Lasso regression and support vector machine (SVM) feature selection in bioinformatics to identify genes linked to UC and BAM. The relationship between these genes and immune infiltration was explored, along with their correlation with immune factors in the Tumor-Immune System Interaction Database (TISIDB) database. Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis was then used to predict signaling pathways associated with key genes in UC. Single-cell data from the GSE13464 dataset was also analyzed. Finally, Five differentially expressed genes (DEGs) related to BAM (APOA1, AMACR, PEX19, CH25H, and AQP9) were significantly upregulated/downregulated in UC immune cells. The expression of important genes in UC tissue was confirmed in the experimental validation section and AQP9, which showed significant differential expression, was chosen for further validation. The results showed that the AQP9 gene may regulate the IFN - γ/JAK signaling axis, thereby promoting CD8+T cell activation. This research has greatly advanced our comprehension of the pathogenesis and underlying mechanism of BAM in immune cells linked to UC.

6.
Microbiol Res ; 287: 127859, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098095

ABSTRACT

Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.


Subject(s)
Bacillus , Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus/genetics , Bacillus/physiology , Bacillus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Polysaccharides, Bacterial/metabolism , Aquatic Organisms/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
7.
Neurosci Lett ; 837: 137919, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39089611

ABSTRACT

The sympathetic nervous system is crucial for the regulation of visceral organ function. For instance, the activation of the sympathetic nervous system promotes glycogenolysis in the liver and modulates glucagon and insulin release from the pancreas, thereby raising blood glucose levels. A decrease in sympathetic nerve activity has the opposite effect. Although such acute effects of sympathetic activity changes have been studied, their long-term outcomes have not been previously examined. In this study, we removed the celiac/superior mesenteric ganglia, where sympathetic postganglionic neurons innervating pancreas and liver locate, and examined its effects on glucose homeostasis and islet size several weeks after surgery. Consistent with the reduction in gluconeogenesis, glucose tolerance improved in gangliectomized mice. However, contrary to our expectation that the inhibition of pancreatic function by sympathetic nerves would be relieved with gangliectomy, insulin or C-peptide release did not increase. Examining the size distribution of pancreatic islets, we identified that the gangliectomy led to a size reduction in large islets and a decrease in the proportion of α and ß cells within each islet, as analyzed by immunostaining for insulin and glucagon, respectively. These results indicate that the absence of sympathetic nerve activity reduces the size of the pancreatic islets within a few weeks to reinstate the homeostatic mechanism of blood glucose levels.


Subject(s)
Ganglia, Sympathetic , Glucagon , Islets of Langerhans , Animals , Islets of Langerhans/metabolism , Ganglia, Sympathetic/metabolism , Glucagon/metabolism , Male , Blood Glucose/metabolism , Insulin/metabolism , Mice, Inbred C57BL , Mice , Organ Size , Glucose Tolerance Test , Ganglionectomy/methods
8.
iScience ; 27(8): 110506, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39184439

ABSTRACT

Ovarian cancer stem cells (OCSCs) significantly impact the prognosis, chemoresistance, and treatment outcomes in OC. While ferroptosis has been proven effective against OCSCs, the intricate relationship between ferroptosis and OCSCs remains incompletely understood. Here, we enriched ovarian cancer stem-like cells (OCSLCs) through mammosphere culture, as an OCSC model. OCSLCs displayed heightened ferroptosis susceptibility, correlating with elevated FXN levels compared to non-stem OC cells. FXN has recently emerged as a potential regulator in ferroptosis. FXN knockdown diminished stemness marker nanog, sphere-forming ability, increased reactive oxygen species (ROS) generation, and attenuated OCSLCs viability. FXN overexpression exacerbated ferroptosis resistance and reduced RSL3-induced cell death. FXN knockdown impeded OCSLC xenograft tumor growth and exacerbated the degeneration of peroxiredoxin 3 (PRDX3), a mitochondrial antioxidant protein participates in oxidative stress. Thus, elevated FXN in OCSLCs suppresses ROS accumulation, fostering ferroptosis resistance, and regulates the antioxidant protein PRDX3. FXN emerges as a potential therapeutic target for OC.

9.
Water Sci Technol ; 89(12): 3309-3324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39150426

ABSTRACT

Polyacrylamide (PAM) in environmental water has become a major problem in water pollution management due to its high molecular mass, high viscosity and non-absorption by soil. CoFe2O4 with strong magnetic properties was prepared by solvent-thermal synthesis method and used as the catalyst for the removal on PAM in heterogeneous Electro-Fenton (EF) system. It showed that the removal efficiency of PAM by the heterogeneous EF system using CoFe2O4 catalyst was 92.01% at pH 3 after 120 min. Further studies indicated that ·OH was the most significant active species for the removal of PAM, and the contribution of ·O2- and SO4·- for the removal of PAM was less than 15%. The reusability test and XRD, XPS, FTIR analyses proved that the catalyst had good stability. After a repeated use for five times, the catalyst still had a high PAM removal rate and stable structure. The valence distribution and functional groups of the phase components of the catalyst did not change significantly before and after the reaction. The possible mechanism of catalyst activation of H2O2 was deduced by mechanism investigation. The CoFe2O4 is an efficient and promising catalyst for the removal of PAM wastewater.


Subject(s)
Acrylic Resins , Cobalt , Ferric Compounds , Hydrogen Peroxide , Iron , Acrylic Resins/chemistry , Cobalt/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods
10.
Cytokine ; 182: 156705, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053079

ABSTRACT

Gout is an autoinflammatory disease characterized by the deposition of monosodium urate crystals in or around the joints, primarily manifesting as inflammatory arthritis that recurs and resolves spontaneously. Interleukin-6 (IL-6) is a versatile cytokine with both anti-inflammatory and pro-inflammatory capabilities, linked to a variety of inflammatory diseases such as gouty arthritis, rheumatoid arthritis, inflammatory bowel disease, vasculitis, and several types of cancer. The rapid production of IL-6 during infections and tissue damage aids in host defense. However, excessive synthesis of IL-6 and dysregulation of its receptor signaling (IL-6R) might contribute to the pathology of diseases. Recent advancements in clinical and basic research, along with developments in animal models, have established the significant role of IL-6 and its receptors in the pathogenesis of gout, although the precise mechanisms remain to be fully elucidated. This review discusses the role of IL-6 and its receptors in gout progression and examines contemporary research on modulating IL-6 and its signaling pathways for treatment. It aims to provide insights into the pathogenesis of gout and to advance the development of targeted therapies for gout-related inflammation.


Subject(s)
Gout , Interleukin-6 , Receptors, Interleukin-6 , Signal Transduction , Humans , Gout/metabolism , Interleukin-6/metabolism , Animals , Receptors, Interleukin-6/metabolism , Uric Acid/metabolism , Inflammation/metabolism
11.
ChemMedChem ; : e202400349, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965060

ABSTRACT

Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.

12.
Org Lett ; 26(29): 6142-6147, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38995672

ABSTRACT

Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.

13.
Int J Biol Macromol ; 276(Pt 2): 133988, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032887

ABSTRACT

Ultraviolet B (UVB) radiation accelerates the aging process of skin cells by triggering oxidative stress and inflammatory responses. The aim of this study was to investigate the mechanism of action of sRNAs and protein molecules in the regenerative extracellular vesicles of Lactobacillus plantarum against the UVB-induced photoaging process of human keratinocytes. The extracellular vesicles regenerated by Lactobacillus plantarum were isolated and purified to identify sRNAs and protein components. Human keratinocytes were treated with UVB radiation to simulate the photoaging model. The effects of different concentrations of vesicle extract on cell survival rate, oxidative stress index and inflammatory marker expression were evaluated in control group and treatment group. The results showed that the regenerated extracellular vesicles of L. plantarum significantly improved the survival rate of keratinocytes after UVB radiation, and delayed the aging process of skin cells by reducing oxidative stress and inhibiting inflammatory response.


Subject(s)
Extracellular Vesicles , Keratinocytes , Lactobacillus plantarum , Skin Aging , Ultraviolet Rays , Lactobacillus plantarum/chemistry , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Extracellular Vesicles/metabolism , Skin Aging/drug effects , Skin Aging/radiation effects , Oxidative Stress/drug effects , Cell Survival/drug effects , RNA, Small Untranslated
14.
J Cosmet Dermatol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923657

ABSTRACT

BACKGROUND: Natural herbs have been widely considered a reservoir for skin-lightening ingredients, but discovery of the effective ingredients from herbs remains a large challenge. AIM: This research aimed to rapidly identify compounds with skin-lightening activity in Chinese herbs. METHODS: The structure information of herbal compounds was collected and selected from the open-source data. High throughput virtual screening (HTVS) and Extra precision (XP) docking modes were used to screen for compounds that could bind to the mushroom tyrosinase involved in melanin synthesis. Furthermore, molecular dynamics (MD) simulations were introduced to assess the binding stability of those compounds with the key target protein. The candidate compounds found by this kind of multidimensional molecular screening were finally tested for their ability to inhibit pigmentation and potential toxicity using an in vivo zebrafish animal model. RESULTS: A Natural Compounds Database was established with 5616 natural compounds. Fourteen compounds with favorable binding capability were screened by the XP docking mode with mushroom tyrosinase and five compounds among them were found to have superior dynamic binding performance through MD simulations. Then the Zebrafish animal experiments revealed that two components, sennoside B (SB) and sennoside C (SC), could significantly inhibit melanogenesis rather than the other three compounds. Meanwhile, there were no obvious side effects observed in SB and SC about the morphology, heart rate, or body length of zebrafish. CONCLUSION: A strategy for rapid screening of compounds with whitening activity has been established, and two potent skin-lightening compounds, SB and SC, have been identified from a vast library of herbal compounds. This study revealed that SB and SC have potential for topical use in skin lightening for the first time. The findings of this study would provide an important theoretical basis for the application of these two compounds in the cosmetic field in the future.

15.
RSC Adv ; 14(21): 15008-15020, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38720974

ABSTRACT

Enamel white spot lesions (WSLs) are usually caused by the dissolution of minerals (mainly calcium and phosphate) on the tooth surface due to the acidic environment in the oral cavity. Without timely intervention, WSLs may lead to white spots or a sense of transparency on the tooth surface, and even the formation of dental caries (tooth decay) in severe cases. The key to preventing and treating WSLs is inhibiting the activity of acid-producing bacteria and promoting the remineralization of demineralized enamel. In this study, the network structure formed by sodium tripolyphosphate (TPP) cross-linked chitosan was used to stabilize calcium phosphate, and the multifunctional nanocomposite was constructed by integrating antibacterial components of traditional Chinese medicine, honokiol nanoparticles (HK-NPs) and sodium fluoride to achieve the purpose of resisting cariogenic bacteria and remineralizing with sustained release of calcium and phosphate ions. Notably, we enhanced the remineralization effect of nanocomposites with the help of functional nanocoatings inspired by the mussel biomimetic coating. The experimental results show that the synergistic remineralization effect of nanocomposite and nanocoating is better than that of a single strategy. This multi-prong treatment strategy provides the theoretical and experimental basis for the clinical prevention and treatment of WSLs.

16.
Food Chem ; 451: 139377, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703722

ABSTRACT

Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.


Subject(s)
Bacteria , Microbiota , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Fermentation , Metabolomics , Temperature , Fermented Foods/analysis , Fermented Foods/microbiology
17.
ACS Appl Mater Interfaces ; 16(22): 29087-29097, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788159

ABSTRACT

Electrospun microfibers, designed to emulate the extracellular matrix (ECM), play a crucial role in regulating the cellular microenvironment for tissue repair. Understanding their mechanical influence and inherent biological interactions at the ECM interface, however, remains a complex challenge. This study delves into the role of mechanical cues in tissue repair by fabricating Col/PLCL microfibers with varying chemical compositions and alignments that mimic the structure of the ECM. Furthermore, we optimized these microfibers to create the Col/PLCL@PDO aligned suture, with a specific emphasis on mechanical tension in tissue repair. The result reveals that within fibers of identical chemical composition, fibroblast proliferation is more pronounced in aligned fibers than in unaligned ones. Moreover, cells on aligned fibers exhibit an increased aspect ratio. In vivo experiments demonstrated that as the tension increased to a certain level, cell proliferation augmented, cells assumed more elongated morphologies with distinct protrusions, and there was an elevated secretion of collagen III and tension suture, facilitating soft tissue repair. This research illuminates the structural and mechanical dynamics of electrospun fiber scaffolds; it will provide crucial insights for the advancement of precise and controllable tissue engineering materials.


Subject(s)
Biomimetic Materials , Cell Proliferation , Sutures , Tissue Engineering , Tissue Scaffolds , Animals , Cell Proliferation/drug effects , Biomimetic Materials/chemistry , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/cytology , Polyesters/chemistry , Stress, Mechanical
18.
Article in English | MEDLINE | ID: mdl-38801182

ABSTRACT

INTRODUCTION: Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. METHODS: In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. RESULTS: Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. DISCUSSION: Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.

19.
Environ Res ; 257: 119240, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38821462

ABSTRACT

BACKGROUND: Prolonged exposure to air pollution has been linked to adverse respiratory health, yet the evidence concerning its association with chronic obstructive pulmonary disease (COPD) is inconsistent. The evidence of a greenness effect on chronic respiratory diseases is limited. OBJECTIVE: This study aimed to investigate the association between long-term exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (as measured by the normalized difference vegetation index - NDVI) and incidence of self-reported chronic bronchitis or COPD (CB/COPD). METHODS: We analyzed data from 5355 adults from 7 centers participating in the Respiratory Health in Northern Europe (RHINE) study. Mean exposures to air pollution and greenness were assessed at available residential addresses in 1990, 2000 and 2010 using air dispersion models and satellite data, respectively. Poisson regression with log person-time as an offset was employed to analyze the association between air pollution, greenness, and CB/COPD incidence, adjusting for confounders. RESULTS: Overall, there were 328 incident cases of CB/COPD during 2010-2023. Despite wide statistical uncertainty, we found a trend for a positive association between NO2 exposure and CB/COPD incidence, with incidence rate ratios (IRRs) per 10 µg/m³ difference ranging between 1.13 (95% CI: 0.90-1.41) in 1990 and 1.18 (95% CI: 0.96-1.45) in 2000. O3 showed a tendency for inverse association with CB/COPD incidence (IRR from 0.84 (95% CI: 0.66-1.07) in 2000 to 0.88 (95% CI: 0.69-1.14) in 2010. No consistent association was found between PM, BC and greenness with CB/COPD incidence across different exposure time windows. CONCLUSION: Consistent with prior research, our study suggests that individuals exposed to higher concentrations of NO2 may face an elevated risk of developing COPD, although evidence remains inconclusive. Greenness was not associated with CB/COPD incidence, while O3 showed a tendency for an inverse association with the outcome.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/chemically induced , Humans , Incidence , Air Pollution/adverse effects , Air Pollution/analysis , Female , Male , Europe/epidemiology , Environmental Exposure/adverse effects , Middle Aged , Aged , Air Pollutants/analysis , Adult , Particulate Matter/analysis , Ozone/analysis , Ozone/adverse effects , Nitrogen Dioxide/analysis
20.
Endocrine ; 85(1): 313-320, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760615

ABSTRACT

OBJECTIVE: Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab. METHODS: The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals. PARTICIPANTS: This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting. RESULTS: Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients. CONCLUSIONS: Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.


Subject(s)
Adverse Drug Reaction Reporting Systems , Antibodies, Monoclonal, Humanized , Databases, Factual , Humans , Male , Female , Retrospective Studies , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , United States/epidemiology , Adult , Aged , Young Adult , Drug-Related Side Effects and Adverse Reactions/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL