Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacoepidemiol Drug Saf ; 31(9): 944-952, 2022 09.
Article in English | MEDLINE | ID: mdl-35689299

ABSTRACT

With availability of voluminous sets of observational data, an empirical paradigm to screen for drug repurposing opportunities (i.e., beneficial effects of drugs on nonindicated outcomes) is feasible. In this article, we use a linked claims and electronic health record database to comprehensively explore repurposing effects of antihypertensive drugs. We follow a target trial emulation framework for causal inference to emulate randomized controlled trials estimating confounding adjusted effects of antihypertensives on each of 262 outcomes of interest. We then fit hierarchical models to the results as a form of postprocessing to account for multiple comparisons and to sift through the results in a principled way. Our motivation is twofold. We seek both to surface genuinely intriguing drug repurposing opportunities and to elucidate through a real application some study design decisions and potential biases that arise in this context.


Subject(s)
Antihypertensive Agents , Drug Repositioning , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Causality , Databases, Factual , Electronic Health Records , Humans , Randomized Controlled Trials as Topic
2.
IET Nanobiotechnol ; 10(2): 75-80, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27074857

ABSTRACT

Plastic nanofluidic devices are becoming increasingly important for biological and chemical applications. However, they suffer from high auto-fluorescence when used for on-chip optical detection. In this study, the auto-fluorescence problem of plastic nanofluidic devices was remedied by newly developed fabrication methods that minimise their auto-fluorescence: one by depositing a gold (Au) layer on them, the other by making them ultra-thin. In the first method, the Au layer [minimum thickness is 40 nm on 150 µm SU-8, 50 nm on 1 mm polyethylene terephthalate (PET), and 40 on 2 nm polymethyl methacrylate (PMMA)] blocks the auto-fluorescence of the polymer; in the second method, auto-fluorescence is minimised by making the chips ultra-thin, selected operating thickness of SU-8 is 20 µm, for PET it is 150 µm, and for PMMA it is 0.8 mm.


Subject(s)
Lab-On-A-Chip Devices , Microtechnology/methods , Nanostructures/chemistry , Plastics/chemical synthesis , Dimethylpolysiloxanes/chemistry , Equipment Design , Fluorescence , Gold/chemistry , Microfluidic Analytical Techniques/instrumentation , Nylons/chemistry , Plastics/chemistry , Polymethyl Methacrylate/chemical synthesis , Polymethyl Methacrylate/chemistry , Silicon Dioxide/chemistry
3.
Biosens Bioelectron ; 72: 288-93, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26000461

ABSTRACT

A novel method based on plasma etching was proposed for monolithically integrating planar nanochannels and microelectrodes on a poly (methyl methacrylate) (PMMA) plate, and complete PMMA nanofluidic electrochemical chips with integrated microelectrodes were constructed by bonding with another PMMA plate containing microchannels. The fabrication sequences of nanochannels and microelectrodes were optimized. The oxygen plasma etching rate of PMMA nanochannels was studied, and the average rate was 15 nm/min under optimal conditions. An UV-ozone assisted thermal bonding method was developed to realize a low-temperature chip bonding, and the variations in width and depth of nanochannels before and after bonding were 2% and 5%, respectively. As a demonstration, a nanoparticle crystal (NPC)-based nanofluidic biosensor with integrated Ag microelectrodes was designed and fabricated. Sub-microchannel arrays with a depth of 400 nm and a width of 30 µm on the biosensor functioned as filters, and trapped 540 nm silica nanoparticles modified with streptavidin inside the connected microchannel to assemble the NPC. The interspaces in the NPC formed a three-dimensional nanochannel network with an equivalent diameter of 81 nm. By measuring the conductance across the NPC, a high quality nanofluidic sensing of biotin was achieved. The limit of detection was 1 aM, and the detection range was from 1 aM to 0.1 nM.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Nanostructures/chemistry , Polymethyl Methacrylate/chemistry , Biotin/analysis , Equipment Design , Microelectrodes , Microtechnology , Silicon Dioxide/chemistry
4.
Biomicrofluidics ; 8(6): 066503, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25553203

ABSTRACT

We present in this paper a method for obtaining a low cost and high replication precision 2D (two dimensional) nanofluidic chip with a PET (polyethylene terephthalate) sheet, which uses hot embossing and a thermal bonding technique. The hot embossing process parameters were optimized by both experiments and the finite element method to improve the replication precision of the 2D nanochannels. With the optimized process parameters, 174.67 ± 4.51 nm wide and 179.00 ± 4.00 nm deep nanochannels were successfully replicated into the PET sheet with high replication precision of 98.4%. O2 plasma treatment was carried out before the bonding process to decrease the dimension loss and improve the bonding strength of the 2D nanofluidic chip. The bonding parameters were optimized by bonding rate of the nanofluidic chip. The experiment results show that the bonding strength of the 2D PET nanofluidic chip is 0.664 MPa, and the total dimension loss of 2D nanochannels is 4.34 ± 7.03 nm and 18.33 ± 9.52 nm, in width and depth, respectively. The fluorescence images demonstrate that there is no blocking or leakage over the entire micro- and nanochannels. With this fabrication technology, low cost polymer nanochannels can be fabricated, which allows for commercial manufacturing of nano-components.

SELECTION OF CITATIONS
SEARCH DETAIL
...