Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 116(1): 256-262, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36625153

ABSTRACT

Hymenopteran parasitoids generally show a haplo-diploid sex determination system. Haploid males are produced from unfertilized eggs, whereas diploid females develop from fertilized eggs (arrhenotokous). In some cases, diploid females develop from unfertilized eggs (thelytokous). Diglyphus wani (Hymenoptera: Eulophidae) is a biological control agent for agromyzid leafminers and have arrhenotokous and thelytokous strains. However, the morphological characteristics of two strains of D. wani are so similar that it is difficult to accurately distinguish them based on morphology. Here, a rapid molecular identification method was developed based on the mitochondrial gene cytochrome c oxidase I (COI) and one-step multiplex PCR. Two primer combinations, PC1 (Ar-F1/Th-F1/WR2) and PC2 (Ar-F1/Th-F4/WR2), were designed and repeatedly screened to distinguish two strains simultaneously, of which two special forward primers Th-F1/Th-F4 were used for the thelytokous strain and one special forward primer Ar-F1 was used for the arrhenotokous strain. In addition, a common reverse primer, WR2, was used for both strains. The PC1 and PC2 PCR assays were effective in distinguishing the two strains at different developmental stages and field colonies. This method provides a reliable, highly sensitive, and cost-effective tool for the rapid identification of the two strains of D. wani.


Subject(s)
Hymenoptera , Wasps , Female , Male , Animals , Hymenoptera/genetics , Multiplex Polymerase Chain Reaction , Biological Control Agents
2.
Surg Innov ; 30(1): 36-44, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35507460

ABSTRACT

Background. Robotic systems can overcome some limitations of laparoscopic total mesorectal excision (L-TME), thus improving the quality of the surgery. So far, many studies have reported the technical feasibility and short-term oncological results of robotic total mesorectal excision (R-TME) in treating rectal cancer (RC); however, only a few evaluated the survival and long-term oncological outcomes. The following study compared the medium-term oncological data, 3-year overall survival (OS), and disease-free survival (DFS) of L-TME and R-TME in patients with rectal cancer. Methods. In this retrospective study, records of patients (patients with stage I-III rectal cancer) who underwent surgery (127 cases of L-TME and 148 cases of R-TME) at the Gansu Provincial Hospital between June 2016 and March 2018 were included in the analysis. Kaplan-Meier analysis evaluated the 3-year OS and DFS for all patients treated with curative intent. Results. The conversion rate was significantly higher, and the postoperative hospital stay was significantly longer in the L-TME group than in the R-TME group (all P<.05). Major complications were significantly lower in the robotic group (P<.05). The 3-year DFS rate (for all stages) was 74.8% for L-TME and 85.8% for R-TME (P = .021). For disease stage III, the 3-year DFS and OS were significantly higher in the R-TME group (P<.05). Conclusion. R-TME can achieve better oncological outcomes and is more beneficial for RC patients compared with L-TME, especially for those with stage III rectal cancers. Nevertheless, further randomized controlled trials and a longer follow-up period are needed to confirm these findings.


Subject(s)
Laparoscopy , Rectal Neoplasms , Robotic Surgical Procedures , Robotics , Humans , Robotic Surgical Procedures/methods , Retrospective Studies , Laparoscopy/methods , Rectal Neoplasms/surgery , Treatment Outcome
3.
Int J Neural Syst ; 30(2): 2050001, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31969078

ABSTRACT

Neuromodulation plays a vital role in the prevention and treatment of neurological and psychiatric disorders. Neuromodulation's feasibility is a long-standing issue because it provides the necessity for neuromodulation to realize the desired purpose. A controllability analysis of neural dynamics is necessary to ensure neuromodulation's feasibility. Here, we present such a theoretical method by using the concept of controllability from the control theory that neuromodulation's feasibility can be studied smoothly. Firstly, networks of multiple coupled neural populations with different topologies are established to mathematically model complicated neural dynamics. Secondly, an analytical method composed of a linearization method, the Kalman controllable rank condition and a controllability index is applied to analyze the controllability of the established network models. Finally, the relationship between network dynamics or topological characteristic parameters and controllability is studied by using the analytical method. The proposed method provides a new idea for the study of neuromodulation's feasibility, and the results are expected to guide us to better modulate neurodynamics by optimizing network dynamics and network topology.


Subject(s)
Models, Neurological , Neurons/physiology , Synaptic Transmission , Brain/physiology , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...