Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1028178, 2023.
Article in English | MEDLINE | ID: mdl-36909944

ABSTRACT

Background: Stroke is one of the most severe diseases worldwide, resulting in physical and mental problems. Dl-3-n-butylphthalide, a compound derived from celery seed, has been approved for treating ischemic stroke in China. No study has evaluated how Dl-3-n-butylphthalide affects the ferroptosis SLC7A11/GSH/GPX4 signal pathway and blood-brain barrier (BBB) PDGFRß/PI3K/Akt signal pathways in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model of ischemic stroke. Methods: Sprague-Dawley rats were used to develop the MCAO/R model. Our study used three incremental doses (10, 20, and 30) of Dl-3-n-butylphthalide injected intraperitoneally 24 h after MCAO/R surgery. The neuroprotective effect and success of the model were evaluated using the neurofunction score, brain water content determination, and triphenyl-tetrazolium chloride-determined infarction area changes. Pathological changes in the brain tissue and the degree of apoptosis were examined by hematoxylin and eosin, Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, pathway proteins and RNA expression levels were studied to verify the effects of Dl-3-n-butyphthalide on both pathways. At the same time, commercial kits were used to detect glutathione, reactive oxygen species, and malondialdehyde, to detect oxidative stress in brain tissues. Results: The middle dose of Dl-3-n-butylphthalide not only improved MCAO-induced brain dysfunction and alleviated pathological damage, brain inflammatory response, oxidative stress, and apoptosis but also protected against ferroptosis and reduced BBB damage. These changes resulted in improved neurological function in the cerebral cortex. Conclusion: We speculate that Dl-3-n-butylphthalide has a neuroprotective effect on focal cerebral ischemia/reperfusion, which may be mediated through ferroptosis-dependent SLC7A11/GSH/GPX4 signal pathway and PDGFRß/PI3/Akt signal pathway.

2.
Exp Ther Med ; 25(3): 113, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36793330

ABSTRACT

Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.

3.
Inflammation ; 46(2): 556-572, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36269513

ABSTRACT

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-ß/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-ß/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.


Subject(s)
Lupus Erythematosus, Systemic , Tumor Necrosis Factor-alpha , Animals , Mice , Brain-Derived Neurotrophic Factor , Calcitriol/pharmacology , Calcitriol/therapeutic use , Choroid Plexus , Inflammation/drug therapy , Inflammation/complications , Lupus Erythematosus, Systemic/therapy , Mice, Inbred MRL lpr , NF-kappa B , PPAR gamma , Transforming Growth Factor beta , Smad Proteins/metabolism
4.
Front Aging Neurosci ; 14: 1015453, 2022.
Article in English | MEDLINE | ID: mdl-36325190

ABSTRACT

The brain injury caused by cerebral ischemia-reperfusion is related to mitochondrial damage. Maintaining the normal function of mitochondria, promoting angiogenesis, protecting neuronal cells, and resisting oxidative stress are the keys to functional recovery after acute ischemic stroke. In this study, we established a middle cerebral artery occlusion (MCAO) model and investigated the effects of 1α,25-dihydroxyvitamin D3 (VitD or 1,25-D3) on mitochondrial function via the adenosine 5'-monophosphate-activated protein kinase (AMPK)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway in rats with cerebral ischemia-reperfusion injury. The neurological function and infarct size were measured in each group. Hematoxylin-eosin, neuronal nucleus, and Nissl staining procedures were conducted to observe the morphology and number of the cerebral cortical neurons. Western blotting was then used to analyze p-AMPK, vitamin D receptor (VDR), p-GSK-3ß, p-AKT, P53, cytochrome C (CytC), TGF-ß, and vascular endothelial growth factor (VEGF) in mitochondria. Immunofluorescence staining was used to observe the expression of CytC and caspase-3. Succinate dehydrogenase, ATPase, reactive oxygen species, and malondialdehyde were detected by kits. RT-qPCR was used to analyze TGF-ß, VEGF, P53, and CytC mRNA. The results revealed that the cerebral infarct volume, neurological function score, apoptotic protein P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde were significantly increased in MCAO rats. 1,25-D3 reduced the infarct size and neurological function score, activated VDR, upregulated TGF-ß, p-AMPK, p-AKT, p-GSK-3ß, VEGF, ATP, and succinate dehydrogenase, and downregulated P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde. As an antagonist of VDRs, pyridoxal-5-phosphate could partially block the neuroprotective effect of 1,25-D3. In conclusion, 1,25-D3 activated AMPK/AKT/GSK-3ß signaling and VDRs, inhibited P53, CytC, and caspase-3, increased TGF-ß and VEGF, regulated mitochondrial metabolism, reduced neuronal apoptosis, promoted vascular growth, and exerted neuroprotective effects. These findings suggest that this signaling pathway may be an effective target for the treatment of ischemic stroke.

5.
J Microbiol Immunol Infect ; 53(5): 731-738, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30638785

ABSTRACT

BACKGROUND/PURPOSES: Treatment of Staphylococcus aureus infections is challenging owing to widespread multidrug resistance. There is now considerable interest in the potential of combination therapies. Although linezolid/fosfomycin combination appears to be a promising treatment option based on in vitro data, further preclinical work is needed. In this study, the Galleria mellonella system was employed to study the in vivo efficacy of this combination in order to determine whether it should be explored further for the treatment of S. aureus infections. METHODS: The antimicrobial activity of linezolid and fosfomycin alone and in combination was assessed versus four S. aureus. Synergy studies were performed using the microtitre plate chequerboard assay and time-kill methodology. The in vivo activity of linezolid/fosfomycin combination was assessed using a G. mellonella larvae model. RESULTS: The combination of linezolid and fosfomycin was synergistic and bacteriostatic against four tested strains. Treatment of G. mellonella larvae infected with lethal doses of S. aureus resulted in significantly enhanced survival rates when low-dose of combination has no significant differences with high-dose combination (P > 0.05), G. mellonella hemolymph burden of S. aureus suggest that combination therapy with rapid and sustained bacteriostatic activity compared monotherapy. CONCLUSION: This work indicated that linezolid combination with fosfomycin has synergistic effect against S. aureus in vitro and in an experimental G. mellonella model, and it suggests that high-dose of linezolid and fosfomycin may not necessary.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Fosfomycin/therapeutic use , Linezolid/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Moths
6.
Infect Drug Resist ; 12: 3497-3505, 2019.
Article in English | MEDLINE | ID: mdl-31814738

ABSTRACT

OBJECTIVES: To explore the in vitro and in vivo antibacterial activity of linezolid/fosfomycin combination against vancomycin-susceptible and -resistant enterococci (VSE and VRE), and provide a theoretical basis for the treatment of VRE. METHODS: The checkerboard method and time-kill curve study were used to evaluate the efficacy of linezolid combined with fosfomycin against VSE and VRE. The transmission electron microscopy (TEM) was employed to observe the cell morphology of bacteria treated with each drug alone or in combination, which further elucidate the mechanism of action of antibiotic combination therapy. The Galleria mellonella infection model was constructed to demonstrate the in vivo efficacy of linezolid plus fosfomycin for VSE and VRE infection. RESULTS: The fractional inhibitory concentration index (FICI) values of all strains suggested that linezolid showed synergy or additivity in combination with fosfomycin against five of the six strains. Time-kill experiments demonstrated that the combination of linezolid-fosfomycin at 1×MIC or 2×MIC led to higher degree of bacterial killing without regrowth for all isolates tested than each monotherapy. TEM images showed that the combination treatment damaged the bacterial cell morphology more obviously than each drug alone. In the Galleria mellonella infection model, the enhanced survival rate of the combination treatment compared with linezolid monotherapy (P<0.05) was revealed. CONCLUSION: Our data manifested that the combination of linezolid and fosfomycin was a potential therapeutic regimen for VRE infection. The combination displayed excellent bacterial killing and inhibited amplification of fosfomycin-resistant subpopulations.

7.
Infect Drug Resist ; 11: 2107-2115, 2018.
Article in English | MEDLINE | ID: mdl-30464553

ABSTRACT

OBJECTIVES: Linezolid combination therapy is recommended for the treatment of Staphylococcus aureus (S. aureus) infections. However, the optimal regimen of the combination therapy for S. aureus is unknown. The objective of this study was to investigate the antibacterial activity, post-antibiotic effect (PAE), and post-antibiotic subminimum inhibitory concentration (MIC) effect (PA-SME) of linezolid alone and in combination with fosfomycin against eleven clinical isolates of S. aureus. METHODS: The synergistic effects and antibacterial activity of linezolid and fosfomycin were assessed by checkerboard and time-kill assays. To determine the PAE and PA-SME, S. aureus strains in the logarithmic phase of growth were exposed for 1, 2, and 3 hours to the antibiotics, alone and in combination. Recovery periods of test strains were evaluated using viable counting after dilution. RESULTS: Synergistic effects were observed for eight strains and no antagonism was found with any combination. Moreover, linezolid combined with fosfomycin at 4x MIC showed the best synergistic antibacterial effect, and this effect was retained after 24 hours. In addition, both the antibiotics alone and in combination showed increased PAE and PA-SME values in a concentration- and time-dependent manner. CONCLUSION: Linezolid combined with fosfomycin exerted a good antibacterial effect against S. aureus, and the combinations have significant PAE and PA-SME.

8.
J Infect Dev Ctries ; 11(12): 926-934, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-31626598

ABSTRACT

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of serious infections. Linezolid and teicoplanin are widely used in the treatment of infections caused by MRSA. However, the efficacy and safety of linezolid compared with teicoplanin remains controversial. The purpose of this study was to systematically review the efficacy and safety of linezolid versus teicoplanin for the treatment of MRSA infections. METHODOLOGY: A meta-analysis was performed on the published studies. Pooled relative risk (RR) and 95% confidence interval (95% CI) were calculated to determine whether there were significant differences between the linezolid group and the teicoplanin group on the efficacy and safety. RESULTS: Seventeen studies were included, involving 2,040 patients. The results showed that linezolid was associated with better clinical cure rate (RR = 1.14, 95% CI = 1.08-1.21, p < 0.00001) and microbiological eradication rate (RR = 1.28, 95% CI = 1.18-1.39, p < 0.00001) compared with teicoplanin. There were no statistically significant differences between the two groups in the treatment of MRSA infections regarding the adverse events (RR = 1.15, 95% CI = 0.97-1.35, p = 0.10) and the mortality (RR = 0.85, 95% CI = 0.61-1.18, p = 0.33). CONCLUSIONS: The results suggest that linezolid may be a better choice for the treatment of patients with MRSA infections. However, our recommendation is that the decision about treating MRSA infections with linezolid or with teicoplanin should depend on local availability, patient population, dosage regimens, costs and safety, rather than presumed differences in efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...